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Introduction

Thanks to the Leeds Logic Group for giving me the opportunity to
be here today. Thank you all for coming.

Let’s look at quantifier sequent rules:

Γ, φ[a:=r ] ` ψ
(∀L)

Γ, ∀a.φ ` ψ

Γ ` φ (a fresh for Γ)
(∀R)

Γ ` ∀a.φ

In this talk I will outline what happens when we view these rules in
the light of nominal sets and lattices.
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Lattices

A lattice L = (|L|,≤) has

I an underlying set x , y , z ∈ |L| and

I a partial order ≤ with finite limits and colimits (meets x∧∧∧y
and joins x∨∨∨y).

Lattices model logic: φ is like x∈|L|, x∧∧∧y is like φ ∧ ψ.

If the lattice is complemented, there is an operation ¬¬¬x which is
like ¬φ.

And so on.
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Nominal lattices

Fix a countably infinite set of atoms a, b, c , · · · ∈ A—atoms are
like variables. Let π range over finite permutations of atoms, e.g.
(b a) swaps b and a.

A nominal lattice is a lattice, with

I a permutation action π·x ∈ |L|, and

I a notion of freshness a#x .

Permutation: like renaming in syntax; φ[b/a] is like (b a)·x .

Freshness: like freshness in syntax. ‘a fresh for φ’ is like a#x .
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Example of nominal lattices

An ordinary lattice is trivially a nominal lattice, where π·x = x and
a#x always.

A set of atoms is cofinite when its complement is finite. The set of
finite and cofinite set of atoms NomPow(A) is a nominal lattice,
where meets are sets intersection, joins are union, permutation is
pointwise (so π·X = {π(a) | a∈X}) and a#X when either X is
finite and a 6∈X or X is cofinite and a∈X .

First-order logic syntax quotiented by derivable equivalence is a
nominal lattice, where permutation is pointwise on representatives
(so π·[φ] = [π·φ] and π·φ acts pointwise on all names in φ) and
a#[φ] when there exists some φ⇔ ψ with a 6∈ fv(φ).

To category theorists: a nominal lattice is a lattice in the category
of nominal sets.
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Nominal sets are abstract

I Category theorists: work in Schanuel Topos.

I Set theorists: work in Fraenkel-Mostowski set theory.

I Everybody else: we have things that resemble variable symbols
and you can permute/rename them and reason using freshness
conditions—but they exist in (nominal) sets, not syntax.

Nominal sets are a mathematical foundation. Like any such, they
display more structure the more closely you look at them. I am
skimming awfully lightly over that structure.

Perhaps in five years I’ll give talks where I don’t worry about
introducing nominal sets, any more than I worry now about
introducing sets and lattices.

6 / 23



Fresh-finite limits

Given x , y∈|L| the meet or limit

x∧∧∧y is the greatest element in {z | z ≤ x , z ≤ y}.

Given x∈|L| and a∈A, the a#limit (a-fresh limit)

∀a.x is the greatest element in {z | z ≤ x , a#z}.

Thus:

I x∧∧∧y is the greatest lower bound for {x , y}, if this exists.

I ∀a.x is the a-fresh greatest lower bound for {x}, if this exists.
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Fresh-finite limits

Compare:

Γ ` φ (a fresh for Γ)

Γ ` ∀a.φ

z ≤ x (a#z)

z ≤ ∀a.x

Nominal lattices with finite a#limits (rather than just limits)
model the right-intro rule for universal quantification.
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How about the left-intro rule?

Γ, φ[a:=r ] ` ψ

Γ, ∀a.φ ` ψ
This features substitution φ[a:=r ], so we need to model that.

Substitution is a structural property, so we model it using nominal
algebra.

Nominal algebra is algebra (logic of equalities) subject to freshness
side-conditions. Axiomatisation on next slide:
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Nominal algebra axiomatisation of substitution

Nominal Algebra (natural extension of nominal rewriting).
Substitution is modelled as a σ-algebra: a function
σ : L×A×A→ L—write σ(x , a, u) as x [a 7→u]—validating axioms

(σa) a[a 7→u] = u
(σid) x [a 7→a] = x
(σ#) a#x ⇒ x [a 7→u] = x
(σα) b#x ⇒ x [a 7→u] = ((b a)·x)[b 7→u]
(σσ) a#v ⇒ x [a 7→u][b 7→v ] = x [b 7→v ][a 7→u[b 7→v ]]

Axioms sound and complete for syntactic model where x is φ and
[a 7→u] is ‘real’ substitution [u/a] (ICTAC 2006, FAC 2008).

(To model term-formers, generalise to σ : L×A×U→ L where U

is a σ-algebra over itself.)
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Back to nominal lattices

Assume the σ-action is monotone:

x ≤ y implies x [a 7→u] ≤ y [a 7→u].

Note by construction that a#∀a.x so that by (σ#)

∀a.x = (∀a.x)[a 7→u]. So

∀a.x ≤ x [a 7→u] for all u.

Thus ∀a.x behaves like
∧

u x [a 7→u] (conjunction of instances).

11 / 23



Back to nominal lattices

Now compare:

Γ, φ[a:=r ] ` ψ
(∀L)

Γ, ∀a.φ ` ψ

z∧∧∧(x [a 7→u]) ≤ y

z∧∧∧∀a.x ≤ y

Nominal lattices with a monotone σ-action model both left- and
right-intro rules for quantification.
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Summary so far:

These sequent rules . . .

Γ, φ[a:=r ] ` ψ
(∀L)

Γ, ∀a.φ ` ψ

Γ ` φ (a fresh for Γ)
(∀R)

Γ ` ∀a.φ

. . . suggest this table:

Propositional logic Lattices Powersets
First-order logic NomLat∀σ ???

Above, NomLat∀σ is short for “Nominal lattices with fresh-finite
limits and a monotone σ-action”.
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Please interrupt me if you have questions.
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Tarski’s semantic story

Usually, we move from propositional logic to first-order logic using
valuations (attributed to Tarski). The high-level shape of
Tarski-style semantics is this:

(Variables→ Denotations)→ Some Lattice.

There are two problems with this:

1. To model universal quantification, the lattice (on the right)
must must have all limits.
But we just want those limits that arise from calculating
universal quantifiers. So the set above is larger than necessary
(cf. NF consistency proof).

2. The shape above is also not amenable to filter-style
arguments and topological duality constructions.
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Soundness, completeness

I’ll just sketch the rest of the development:

I We can give FOL semantics in NomLat∀σ.

I The semantics is absolute: variables in syntax map to atoms
in semantics. No valuations: role of valuations is played by
the σ-action.

I The semantics contains only those limits that must be there
(x∧∧∧y and ∀a.x). It is small.

Now for completeness; we use prime filters. What is a filter in
NomLat∀σ?
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What is a filter?

A subset (which need not be finitely supported) p ⊆ L is a filter
when:

1. ⊥⊥⊥ 6∈ p.

2. If x ∈ p and x ≤ y then y ∈ p.

3. If x ∈ p and y ∈ p then x∧∧∧y ∈ p.

4. If Nb.(b a)·x ∈ p then ∀a.x ∈ p.

Here Nb is the NEW quantifier, meaning ‘for fresh b’. So this
fourth condition is (∀R) in disguise, modulo infinite support of p.

I find it hard to overstate the importance of this observation.
Filters are concrete and very useful. Characterising models of
first-order logic using nominal filters as above seems a big step.
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The amgis-action

L has a sigma-action, so filters have a (dual) amgis-action
( σ-action):

p[u← [a] = {x | x [a 7→u] ∈ p}
x ∈ p[u←[a]⇔ x [a 7→u] ∈ p

Amgis-algebras are also useful structures. They can be axiomatised
algebraically, or built concretely.
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Amgis-algebras

Amgis- ( σ-)algebras are the topological dual to σ-algebras.

I Given a σ-algebra L, its powerset pset(L) has an σ-algebra
structure.

I Given an σ-algebra P (e.g. pset(L)), its powerset pset(P)
(e.g. pset(pset(L))) has a σ-algebra structure.

Given a lattice, filters have an σ-algebra structure, and sets of
filters regain the original σ-algebra structure.
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Brief sketch of sigma and amgis

Suppose L has a σ-action x [a 7→u] and suppose p ∈ pset(L) and
X ∈ pset(pset(L)). Then we write:

x ∈ p[u←[a]⇔ x [a 7→u] ∈ p
p ∈ X [a 7→u]⇔ Na′.p[u← [a′] ∈ (a′ a)·X

One useful little miracle: the double powerset contains a natural
model of equality (to add to the models of conjunction and
quantification):

u===v = {p | Nc .p[u←[c] = p[v←[c]}.

We can use this to extend Stone representation to first-order logic
using nominal lattices and filters. I am sure that other logics are
possible, and I myself have considered the untyped λ-calculus and
Quine’s NF.
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Slogan

I As powersets model propositional logic, . . .

I . . . so σ-algebra powersets model first-order logic with equality.

Propositional logic Lattices Powersets
First-order logic NomLat∀σ Powersets of σ-algebras

We obtained all of this just looking carefully at the quantifier
sequent rules.
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Not just about first-order logic

1. The NF consistency proof uses this technology. Size issues are
avoided since nominal lattices ‘tend to remain small’ even if
they contain fresh-finite limits.
We use the amgis constructions to obtain denotational
extensionality results, dualising ‘obvious’ syntactic
equivalences.

2. We can model the untyped λ-calculus, imitating the
development above but for λ instead of ∀. Topological
duality, for the untyped λ-calculus!
λ is decomposed into a universal quantifier ∀ and an adjoint
to application. The rest is obtained by paying really careful
attention to the filters.

Fresh-finite limits, σ-algebras, and (powersets of) σ-algebras are
powerful concrete tools for building models.
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