Consistency of Quine's NF using nominal
techniques

Murdoch J. Gabbay

Logic and Semantics Talk, Cambridge

Friday 29 May, 2015

32

Introduction

Thanks to the Logic & Semantics Seminar and to Thomas Forster
for inviting me here today. Thank you all for coming.

Please treat these slides as a modality for one possible talk. | will
adjust technical content depending on your feedback. So please do
interrupt with questions and comments.

N

S

A little background

Naive set theory has one rule; naive sets comprehension:

» If ¢ is a predicate, {a | ¢(a)} is a set (the a such that ¢).

“Everything is a set, and a sets comprehension is a set.”

This is inconsistent. Russell's famous 1901 paradox:

{alada} € {a|ada} <« {a|ada} ¢ {a]ada}

32

Solutions

Solutions proposed:

» Zermelo-Fraenkel set theory (ZF sets).
Familiar to me as a PhD student as e.g. the category of sets,
or Isabelle/ZF, and so on. ‘Proved’ consistent by the von
Neumann cumulative hierarchy model; &, powerset(2),

» Type Theory.
Familiar as Higher-Order Logic, ML, and so on. ‘Proved’
consistent by taking sets and function-sets; ¢, %, (¢*)", ¢*'

» Quine's New Foundations (NF).

A

32

Why NF is nice

» It admits a universal set: {a | T}, the set of all sets, is a set.

» My favourite NF trick: model 2 as ‘the set of all two-element
sets' (Frege, 1884).

> Nicer than the standard, brutal, efficient, ZF model:
2={2,{a}}.

» Nicer even than the Church numeral at type a:
2, = Ma—axa.f(f(x)).

The specification of NF is concise:

> If ¢ is a stratifiable predicate, then {a | ¢(a)} is a set.
“Everything is a set, and stratifiable sets comprehension is a
set.”

(NF with urelemente is known consistent. But we lose
extensionality; not everything is a set.)

Stratifiability

¢ is stratifiable when there exists an assignment of a level to its
variables such that:

» If a=b appears in ¢ then level(a) = level(b).
> If a€b appears in ¢ then level(a)+1 = level(b).

a ¢ a is unstratifiable; this blocks the comprehension of Russell's
paradox.

How to semantically interpret stratifiability is part of the mystery
of proving NF’s consistency.

(cf. Thomas Forster’s notion of stratimorphism. | may propose my
own interpretation later in this talk.)

6/32

This is a proof about NF, not a proof in NF

NF is a logical theory.

This has implications to you, if you are considering how to
approach my paper. The tools used in my paper—inductive
reasoning, filter-style models and nominal techniques—are
conducted in ZFA set theory.

You don't need to be an NF expert to read it (I'm no NF expert,
and | wrote it!).

NF is indeed important as a foundation, for its universal set, for its
mysterious and fascinating stratifiability condition, and for much
more. But, you don't need to know about this to see that NF is
consistent (though it's nice if you know a little, of course).

A simplification: TST+

Let's reduce proving consistency of NF to something easier.

First, we prove consistency of TST+ instead, which is known
equivalent to NF.

Assume for each i€N a set of variable symbols A’ (synonymously:

atoms) where level(a) = i if acA’. TST+ syntax is

s = a|{al¢} « Sets
pu=L|pNo| ¢ |Va.g|tEs < Predicates
subject to a stratification condition below.

Define level({a|¢p}) = level(a)+1. Then a predicate is stratified
when for every subterm t€s in it, level(t)+1 = level(s).

32

TST+

NF has stratifiability. TST+ has stratification.

In NF we can't form {a | a & a} because there is no assignment of
a level to a that makes level(a)+1 = level(a).

In TST+ every atom has a fixed level. We can’t form any
{a' | a' ¢ a'} for any ieN.

32

TST+

Axioms of TST+ include

» the axioms you'd expect, such as - ¢ = (¢ = ¢) and
F (Va.¢) = ¢la:=s], plus
» typical ambiguity that for every closed ¢

(TA) F ¢ < ¢t « Levels can be shifted

where ¢T is a copy of ¢ such that every a € A is replaced
with a corresponding at € AL

For instance, 3a.T < 3a°.T. (TA) says levels can be shifted.

TST+ = NF means “stratifiability = (stratification + TA)".

10/32

TSTZ+

We simplify further.

Consider TST+ indexed over Z instead of N.
Levels stretch up and also down.

Call this TSTZ+ (my terminology).

This suggests a proof-method for consistency: build a model that
is symmetric under translational symmetries of Z. (TA) would
follow by symmetry of the model.

11/32

Another simplification: normal forms

s€{a|o} is equivalent to ¢[a—s]. We may reduce every predicate
to one where every € has the form

tea,
for a a variable symbol (an atom). Rewrite this as
aot

to make it look like a A\-term in head normal form (HNF). Call
predicates of the form t€a base predicates.

Let a prepoint be a set of base predicates. So

p = {aos | aos € p} < Prepoint is a set of normal forms
p(a) = {s | aos € p} < ...and also a valuation

So a prepoint behaves like two things:

» Like a set of predicates in HNF.

» Like a valuation mapping atoms to sets (actually: to sets of
sets syntax).

12/32

Outline of the proof is becoming clearer

We propose a model [¢] as a set of prepoints as follows:

» [s€a] = {p€ePoints | aos € p}. <« From duality theory.
» [L] =9 < As expected.

» [0 Ad] =[0]N[¢] + Ditto.

>

How do we interpret {a|¢}? Let's be really simple-minded and use
nominal atoms-abstraction—thus syntactic abstraction maps to
semantic abstraction:

> [{al¢}] = [all9]

How do we interpret Va.¢? We use the -quantifier on sets:

> Va6l = {p | Na.p € (3' a)[o]}.

13 /32

Universal quantifier

If X is a set of prepoints write na.X = {p | Na'.p € (&’ a)-X}.
Then recall

[Va.¢] = na.[¢].
So p € [Va.¢] when for most a'cAlve@) p e (a' a)-[4].
(More on what ‘for most’ means, shortly.)

Recall p behaves like a map a+— {s | aos€p}. So intuitively,

p € [Va.¢] when Wa'.p e [¢][a—p(d)].

To prove consistency of TSTZ+-, we need only ensure that when
we quantify over most a’, p(a’) ranges over all possibilities for

p(a).

And then we're done! V is modelled using U, and NF is consistent.

14 /32

Quick recap

NF — TST+ — TSTZ+. Typical ambiguity (TA) follows.

TSTZ+ — TSTZ+WithNormalForms. This gives us prepoints as
sets of head normal forms aos.

{a]-} — [a]- so abstraction maps to abstraction.

Va.- — Wa.- soV maps to W.

15/32

The internal syntax: surprisingly hard

Sections 3 and 4 of my paper construct the syntax of
TSTZ+WithNormalForms. It's called internal syntax in the paper.

We use nominal algebra to express its properties. See Figures 1
and 2 of the paper.

A critical property is: terms have a minimum level; the level of a
lowest-level atom appearing free or bound in the term. The
normalising rewrite t€{al¢} — ¢[a:=t] does not reduce this
minimum level.

Thus, though levels are in Z, in certain critical lemmas, levels are
still bounded below. This gives us inductive reasoning. A typical
example is Lemma 4.12.

Note on difficulty: this took six to nine months to sort out, which
means | spent as much time on this, as | did on the rest of the
paper put together. (min level 4+ atoms)

16 /32

Two further problems

| was disingenuous earlier. It's not enough to map V to 1. We
need two more things:

1. We need to decide how to interpret substitution.
Since Va.¢p = ¢[a:=s], we need [Va.¢] C [¢[a:=s]]. Now
[¢[a:=s]] is just a set of prepoints.
We need some action on sets of prepoints such that
[¢a:=s]] = [¢][a—s].

2. We encounter size issues; when we make I emulate V we need
every atom to ‘name’ some possible value for p(a’).
However, p(a’) is itself a set of syntax, so we may run into
size issues where the cardinality of possible p(a’) is greater
than that of the atoms available to name them.

17 /32

First problem resolved: substitution on sets of points

The action [@][a—s] is off-the-shelf. We use amgis-algebras, the
dual to sigma-algebras. See the paper, or my “Semantics out of
Context” paper. < Or notes at end.

» Given a set of syntax S, its powerset pow(S) has an
amgis-action and its double powerset pow(pow(S)) has a
sigma-action.

> (Internal) sets and predicates are syntax so have a
sigma-action. ¢[a:=s].

» Points are sets of syntax p = {aos | aos € p} so have an
amgis-action p[s<al.

» Sets of points [¢] = {p | p € [#]} have a sigma-action
[¢][a—s].

18 /32

Second problem resolved: size

In finitely-supported nominal techniques, the finitely-supported
powerset of atoms is countable. A similar observation, scaled up,
helps with size issues here.

We set #A = 1,,. Where 1, is a cardinal that is the size of a
model of Zermelo set theory, so we have ‘plenty’ of atoms!

We use small support instead of finite support, where X is small
when #X<1,,,.

The small-supported powerset of syntax has the same size of
syntax. (Implicit use of permission sets glossed over here.)

19/32

Filter construction

The consistency proof then reduces to a filter-style construction,
where we build a prepoint p that names every possible value of

p(a).

‘Naming' means something technical here, that involves a generous
quantifier 9, where 9a.® holds when —a.—.

20 /32

Summary

We reduce consistency of NF to a filter-like set of terms in
head normal form, over syntax closely related to TST+.
Typical ambiguity is handled by the use of Z for indexes
instead of N.

Sets abstraction is not modelled using sets abstraction; it is
modelled using nominal atoms-abstraction instead!
Universal quantification is not modelled using infinite
intersection; it is modelled using the NEW-quantifier instead!
We do not use finite support; we use small support instead,
where small means ‘has cardinality less than 1,". (i.e. is a
set, not a class.)

We handle substitution using sigma- and amgis-algebras,
taken off-the-shelf from nominal duality theory for FOL and
the A-calculus.

Where do we go from here? How can we leverage this
further?

» What other open problems in set theory might benefit from a
new way to build filters and turn syntax-with-binders into
models? The NF proof relies on {a | ¢} (turns into
atoms-abstraction) and V (turns into 1).

» What applications exist outside set theory (e.g. type theory)
that might benefit from some modification of the semantics
we already have. | just can't stop thinking of aos and how
much it looks like asj . ..s,. A stratified A-calculus may be
lurking.

» Better ‘picture’ needed of the semantics. Graphs with
name-generation?

» What other neat things can sigma, amgis, [a]-, and small
support do?

22/32

References

» Consistency of Quine's NF:
Consistency of Quine’s NF using nominal techniques.
Get it at gabbay.org.uk/papers.html#conqgnf.

> Logic in nominal sigma-powersets:
Semantics out of context: nominal absolute denotations
for first-order logic and computation.
Get it at gabbay.org.uk/papers.html#semooc.

| also suggest two less detailed but more accessible documents:

» What sequent quantifier rules tell us about nominal
semantics for logic.
Get it at gabbay.org.uk/talks.html.

» Nominal semantics for predicate logic.
Get it at gabbay.org.uk/papers.html#nomspl.

23 /32

gabbay.org.uk/papers.html#conqnf
gabbay.org.uk/papers.html#semooc
gabbay.org.uk/talks.html
gabbay.org.uk/papers.html#nomspl

Supplementary material

PTO

24 /32

Peek into the paper: internal syntax

x = atm(a) | [a]X
X = and(X) | neg(X) | all[a]X | elt(x, a)

An internal set x is either

» a variable symbol atm(a) (think ‘a’)
» a comprehension [a]X (think ‘{a | ¢}").

An internal predicate X is either a conjunction (X is a finite
possibly empty set of X), a negation, a universal quantification, or
has the form x € a.

This is a syntax of normal forms under the rewrite rule
sef{a| ¢} — pla=s].

Define substitution . ..

25/32

Peek into the paper: the sigma-action on syntax

(0and) and(X)[a—x] = and({ X[a—x] | X€X'})
(oneg) neg(X)[a—x] = neg(X[a—x])

(call) b#x = (all[b]X)[a—x] = all[b](X[a—x])
(celtatm) a#y,x = elt(y, a)[a—atm(n)] = elt(y[a—atm(n)], n)
(oelta) elt(y, a)[a—[d']X] = X[d'—y[a—[d]X]]
(celtb) elt(y, b)[a—x]| = elt(y[a—x], b)

(el cx = ([e]X)[a—x] = [c](X[a—x])

(oa) atm(a)[a—x] = x

(ob) atm(b)[a—x] = atm(b)

Permutative convention: a, b, ¢ over distinct atoms.

In (oelta), stratification ensures definition of substitution is
inductive. X may be larger than y, but a2’ must have lower level
than a.

26 /32

Intuition of stratifiability

Imagine that each time we dereference a variable, it costs us one
stratifiability dollar.

My intuition for stratifiability is that ¢ comes with a number n of
stratifiability dollars (equal to the difference between the highest-
and lowest-level variables in a stratification of ¢).

When we dereference a variable, we spend one dollar and n is
decremented.

Eventually we run out of dollars and then we are trapped on the
left-hand side, in syntax. We can no longer afford to look up
variables, and we can reason inductively with variables as a base
case.

One reason NF is hard
Consider some sets comprehension {a | ¢}.

» This has inductive structure, since ¢ is syntax.

> It has coinductive structure where
{al @}—={b [} when {b|v}efa] ¢}.
So a model of NF sets can be viewed as finding a solution, write it
NF, to this inductive/coinductive equation:
SyntaxFormers(NF) — NF — Powerset(NF)
NF is difficult because the right-hand side loops back to the
left-hand side: everything is a set—including the set's behaviour!

Problem with variables: we may dereference a variable, and we
have no control over what gets put into it.

See (celta).

The fundamental equation: Sets = [A]Predicates

NF has a universal set, so we might try to construct a model such
that X = powerset(X) (so that X € X).

This raises size issues. We exploit nominal atoms-abstraction
instead.

Sets comprehension is just a binder:

{a] ¢} va.p MNat /f(a) da

So our semantics solves the equation:

NF = [A]SemanticsOfPredicates
Hal o}l = [allo]

[a]- is atoms-abstraction (cf my PhD). No size issues: if X is an
infinite nominal set then [A]X={[a]x | acA, x€X} has same size
as X.

29 /32

Logic in nominal powersets

How to interpret logic in a nominal powerset?

Conjunction and negation correspond to sets intersection and

complement, as usual. Sets membership becomes substitution:

[{b|ve{al o}] = [¢la={b] ¢}]].

30/32

Sketch of sigma and amgis

Suppose X has a o-action x[a—u] and suppose p € powerset(X)
and X € powerset(powerset(X')). Then we write:

x € plusa) & x[a—u] € p
p € X[a—u] & plual € X

(More on amgis in another talk; see references at end.)

[#] is a set of filters, and filters are (almost) sets of predicates, so
[¢] € powerset(powerset(Predicates)).

Predicates ¢ have a o-action (substitution), thus so does [¢].

31/32

Logic in nominal sigma-powersets

The technical jargon:

Predicates are a o-algebra (‘set with substitution’). Sets of
predicates form a dual amgis-algebra. Sets of sets of predicates
restore the original o-algebra structure.

Fact: o-powersets of v-algebras naturally interpret first-order logic
with equality.

An important lemma:

[¢]la—u] = [pla:=u]]-

32/32

