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Introduction

Thanks to the Manchester Logic Seminar for inviting me here
today. Thank you all for coming.

Naive set theory has one rule; naive sets comprehension:

> If ¢ is a predicate, {a | ¢(a)} is a set (the a such that ¢).

“Everything is a set, and a sets comprehension is a set.”

This is inconsistent. Russell's famous 1901 paradox:

{alaga} €{a|ada} & {a|ada}¢{a]ada}
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Solutions

Solutions proposed:

» Zermelo-Fraenkel set theory (ZF sets).
Familiar as e.g. “the category of sets”, or Isabelle/ZF, and so
on.
‘Proved’ consistent by the von Neumann cumulative hierarchy
model; &, powerset(Z), ....

» Type Theory.
Familiar as Higher-Order Logic, ML, and so on. ‘Proved’
consistent by taking sets and function-sets; ¢, 1%, (¢*)", *'

» Quine's New Foundations (NF).
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NF is pretty

It admits a universal set: {a| T}, the set of all sets, is a set.

It admits the lovely representation of the number n as ‘the set of
all n-element sets’ (due to Frege, 1884).

» Nicer than the standard, brutal, efficient, ZF model:
2={2,{o}}.

> Nicer even than the Church numeral at type a:
2, = Ma—a xa.f(f(x)).

The specification of NF is almost as concise as that of naive sets;
we just add the word ‘stratifiable’:

» If ¢ is a stratifiable predicate, then {a| ¢(a)} is a set.
“Everything is a set, and stratifiable sets comprehension is a

set.



Stratifiability

¢ is stratifiable when there exists an assignment of an integer level
to its variables such that:

» If a=b appears in ¢ then level(a) = level(b).
> If a€b appears in ¢ then level(a)+1 = level(b).

a ¢ a is unstratifiable; this blocks the comprehension of Russell's
paradox.

Jda,b.a# bAVc.c € d < (c = aV c = b) is stratifiable, which is
why we can collect all 2-element sets to form

2={d|3Ja,b.a#tbAVc.(ced<c=aVc=Db)}.
How to interpret stratifiability is part of the mystery of proving
NF's consistency.

(cf. Thomas Forster's notion of stratimorphism. | will propose my
own interpretation later in this talk.)



Stratifiability

Russell = {a| a € a}
2={d|3a, b.atbAVc.(c € d < (c=aVc=b))}
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Stratifiability

Russell = {al |-a%€ 3}

2 = {d! | 3a% b0.a%£h° A V0. (0 € dt & (P=aVvcP=h))}
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Possible confusion: NF-the-theory versus
NF-the-foundation

NF is a concise logical theory—easier to specify than, say,
Higher-Order Logic.

NF is also a foundational universe. | prefer to work in
Zermelo-Fraenkel and Fraenkel-Mostowksi set theory, myself.

For the purposes of this talk, NF is a logical theory to prove things
about, such as consistency—not a universe to prove things in.

Thomas Forster and Randall Holmes are examples of NF-istes;
they live and work in NF (I learned of NF from Thomas, who
taught me logic).

Inconsistency of NF would tell us interesting things about the
viability of having a universal set. So a proof of consistency is
relevant beyond NF.



Proof-engineering interest to NF

ZF and type theory have size issues — classes, hierarchies of

universes, cardinality restrictions, and so forth. For instance the set
of all sets is not a set; the category of all sets is not a category; and
so on. This is a nuisance (but an impressive + useful one; ask me).

In theorem-provers (such as COQ) hierarchies of universes appear.
Similarly, a nuisance.

Type theory uses polymorphism (e.g. to define 2 = Af.\a.f(f(a))).
Polymorphism is like cocaine: it feels great, you want more .. .then
life gets complicated and you end up a wreck.

Wouldn't it be nice if we knew a universe existed in which we don't
need to worry about this?



About

my proof

Stratification gives a normal form for the rewrite

x €{a| ¢} — ¢la—x].

V modelled using Gabbay-Pitts ‘NEW' quantifier .

Sets extensionality is handled by saturating extensionality
equalities to a greatest fixedpoint.

V-elimination (VE) (Va.¢) = ¢[a—x] is modelled by logical
dual to VI called the ‘Generous’ quantifier 9.

Generosity also corresponds to proof-theoretic strength.
Semantics of predicates as sets of points, in the sense of
ultrafilters and Stone representation.

» Substitution is modelled nominally using o-algebras.

Sets are (nominal) atoms-abstractions of predicates: {a| ¢} is
like Aa.¢.
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About my proof (short version)

Stratification = x € {a | ¢} — ¢[a—x] terminates
V=W
Extensionality = gfp of “if x, y have same elements then add x = y”
(VE) = (#A=#Sets)
[¢] = {p € points | ¢ € p}
[¢la—u]l = {p | pluca] € [¢]}
Sets = [A]Predicates

A is the set of atoms.
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Syntax and the normal form

s,x == atm(a) | [a]X
X =and(X) | neg(X) | all[a]X | elt(x, a)

An internal set x is either

» a variable symbol atm(a) (think ‘a’)
» a comprehension [a]X (think {a | ¢}").

An internal predicate X is either a conjunction (X is a finite
possibly empty set of X), a negation, a universal quantification, or
has the form x € a.

This is a syntax of normal forms under the rewrite rule
se{a| o} — ¢la—s].
Normal forms let us write this:

[s€a]l = {p| s€a € p}.
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(Peek: the sigma-action on syntax)

(0and) and(X)[a—x] = and({ X[a—x] | X€X'})
(oneg) neg(X)[a—x] = neg(X[a—x])

(call)  bitx = (all[p]X)[a—x]| = all[b](X[a—x])
(celtatm) a#y,x = elt(y, a)[a—atm(n)] = elt(y[a—atm(n)], n)
(celta) elt(y, a)[a—[d'|X] = X[a'—yla—[a']X]]
(oceltb) elt(y, b)[a—x] = elt(y[a—x], b)

Ol)  chx= ([EX)[a—x] = [c](X[a—x])

(ca) atm(a)[a—x] = x

(ob) atm(b)[a—x] = atm(b)

In (celta), stratification ensures definition of substitution is
inductive. X may be larger than y, but a’ must have lower level
than a.



The fundamental equation: Sets = [A]Predicates

NF has a universal set, so we might try to construct a model such
that X = powerset(X) (so that X € X).

This raises size issues. We exploit nominal atoms-abstraction
instead.

Sets comprehension is just a binder:

{a| ¢} va.p Mat /f(a) da ...all >[a]t

So our semantics does this (very simple, actually):

NF = [A]SemanticsOfPredicates
{ale}]l = [a]l4]

[a]- is atoms-abstraction; [A]X = {[a]x | acA, xeX}.
No size issues: if X is infinite then #[A]X=#X.
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SemanticsOfPredicates

What does SemanticsOfPredicates look like?

Digression: a filter is a set of predicates that is consistent and
deductively closed. Recall standard completeness proofs by giving
first-order logic (FOL) predicates semantics as sets of filters.

We do the same: [¢] € SemanticsOfPredicates is a set of filters,
for a suitable notion of filter (which resembles a valuation
environment, for a suitable non-evident notion of valuation).

So:

> [¢] € SemanticsOfPredicates is a set of filters.
» [{a] #}] = [a][¢] € SemanticsOfSets.
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Logic in nominal powersets

How to interpret logic in a nominal powerset?

Conjunction and negation correspond to sets intersection and
complement, as usual. Sets membership becomes substitution:

[{b|v}e{al o}] = [¢la={b | ¥}].

What about quantification [va.¢]?

It is known from previous work that if X is a nominal set with a
substitution action, then so is powerset(powerset(X)) (cf.
topological duality results for FOL and A-calculus).
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Sketch of sigma and amgis

Suppose X has a o-action x[a—u] and suppose p € powerset(X)
and X € powerset(powerset(X')). Then we write:

x € plua] & x[a—u] € p
p € X[a—u] < plusal € X

More on amgis on demand: amgis is the functional preimage of
underlying substitution.

[#] is a set of filters, and filters are (almost) sets of predicates, so
[#] € powerset(powerset(Predicates)).

Predicates ¢ have a o-action (substitution), thus so does [¢].
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Logic in nominal powersets

Thus general nominal abstract nonsense allows us to write the
following:

[va.¢] = [ [#][a 1]
An important lemma is that

[¢][a—u] = [¢[a—u]].

Furthermore, in the presence of generous naming of internal sets,

this simplifies to:

[va.¢] = {p | Nb.(b a)-¢ € p}.
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New and Generous

A filter p generously names x when Da.(a=x € p), meaning that
a=x € p for as many atoms a as there are internal sets.

This guarantees that if Wla.¢(a) € p then ¢(a) € p for some a such
that a=x € p
The mechanics of the proof require the set of atoms to have

cardinality an inacessible cardinal. In symbols: #A = 1.

We unpack this further:

» Na.d(a) holds when #{a | -®(a)} < 3,.
» Da.®(a) holds when #{a| ®(a)} = 3,.
» W and © are dual: Na.®(a) & —2a.~P(a).
» Critical property for (VE):
If Na.®(a) and Da.W(a) then Ja.(P(a) A V(a)).
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Summary

Predicates are a o-algebra (‘set with substitution’). Sets of
predicates form a dual amgis-algebra. Sets of sets of predicates
restore the original o-algebra structure.

Fact: o-powersets of v-algebras naturally interpret first-order logic
with equality.

Furthermore, using nominal lattices and fresh-finite limits we can
identify a subset of the full powerset that is necessary for modelling
logic—avoids size issues.

V is interpreted as W. Interpretation is sound if filter generously
names atoms.



Summary

Sets comprehension is modelled in both syntax and semantics
by atoms-abstraction.

Semantics based on ultrafilters in
powerset(powerset(Syntax)).

This set is large, but using nominal lattice theory we identify a
small ‘logical’ subclass of it.

Nominal topological duality gives logical structure
off-the-shelf: conjunction, negation, substitution, and
quantification (based on W).

Stratifiability gives normal forms.

Generous naming of internal sets © gives (VE) Va.¢p = ¢[a—x].



Retrospective:

This is not an easy proof! However, there is a method to it. It
builds on previous work. It suggests future work.

The proof is subtle but systematic: inductions, duality/filter
construction, and novel but off-the-shelf material on
sigma-powersets. In this sense, the proof is ‘elementary’.

Elementary explanation of stratifiability condition in terms of
normal forms. Perhaps more could be made of this. Perhaps more
could be made of generosity.

This work is not just about NF. It is embedded in, and enriches, a
larger body of mathematics. There's a basket of techniques here
...what else could it be applied to?
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