
Nominal: the big picture

Murdoch J. Gabbay

29 April 2016

1 / 20



Introduction

Thanks to Neel Krishnaswami organising this talk.

Thanks to the Theory group for inviting me.

Thank you all for coming.

2 / 20



An example: sigma
Nominal algebra (Gabbay & Mathijssen 2006) is like universal
algebra but over nominal sets, so enriched with nominal-style
names, freshness, and binding.

Let’s look at an axiomatisation of substitution Z [a 7→X ]:

a#Z ⇒ Z [a 7→X ] = Z
Z [a 7→a] = Z

a#Y ⇒ Z [a 7→X ][b 7→Y ] = Z [b 7→Y ][a 7→X [b 7→Y ]]
b#Z ⇒ Z [a 7→X ] = ((b a)·Z )[b 7→X ]

Call a set T with an operation σ satisfying the axioms above, a
sigma-algebra.

Substitution is an operation of type T× A× T→ T on a nominal
set T, satisfying the axioms above.

Just like group multiplication has type G × G → G or logical
conjunction has type B × B → B.

3 / 20



Sigma

a#Z ⇒ Z [a 7→X ] = Z
Z [a 7→a] = Z

a#Y ⇒ Z [a 7→X ][b 7→Y ] = Z [b 7→Y ][a 7→X [b 7→Y ]]
b#Z ⇒ Z [a 7→X ] = ((b a)·Z )[b 7→X ]

a#Z is a freshness side-condition. It corresponds to saying ‘if a is
not free in Z ’.

(b a)·Z is a permutation. It corresponds to ‘swap b and a in Z ’.

Both have natural interpretions over nominal sets.

As lemmas of the concrete syntactic model of syntactic substitution
:=, the axioms above are often called: garbage-collection, identity,
the substitution lemma, and α-renaming.

4 / 20



alpha � sigma

Let’s rewrite the final α-renaming axiom as one might see it in a
textbook (as a lemma, not an axiom):

b#Z ⇒ Z [a 7→X ] = ((b a)·Z )[b 7→X ] axiom
b 6∈ fv(u)⇒ u[a:=s] = u[a:=b][b:=s] lemma
b 6∈ fv(u)⇒ u[a:=s] = ((b a)·u)[b:=s] lemma

I The top line is an axiom in nominal algebra about σ (i.e. 7→).
I The middle line is a lemma of concrete syntax and syntactic

substitution :=.
I The bottom line is also a lemma, verifying validity of the top

line if T is concrete syntax and 7→ is interpreted as :=.

If b 6∈ fv(u) then u[a:=b] = (b a)·u, so we can say the middle line
and the bottom line are, up to this little lemma, identical.

5 / 20



alpha � sigma

But there is a crucial difference! If we think in terms of rewriting,

I u[a:=s]→ u[a:=b][b:=s] has two substitutions on the right,
because we are managing α-renaming using substitution
which is the very thing we are trying to define.

I u[a:=s]→ ((b a)·u)[b:=s] has only one substitution on the
right, because we manage α-renaming using permutations.

Permutations form a group and are invertible; substitutions form a
monoid and are not.

A mathematical theory of α-renaming can be based on the group
of permutations. Substitution can be built on top of that.

There is no need to interleave the theory of α-renaming with the
theory of substitution.

I will say that alpha is decoupled from sigma. In symbols: α � σ.

6 / 20



Quantifiers
Assume a nominal lattice (that is, a lattice over nominal sets).
Then universal quantification can be axiomatised as follows:

b#X ⇒ ∀a.X = ∀b.(b a)·X
∀a.X ≤ X

a#X ⇒ X ≤ ∀a.X
∀a.(X∧∧∧Y ) = (∀a.X )∧∧∧∀a.Y

Things to note:

I This is equivalent to the following universal property:

∀a.X =
∨
{X ′ ≤ X | a#X ′}.

I Equivalent to ‘adjoint’ property:

a#Y ⇒ Y ≤ X ⇔ Y ≤ ∀a.X

I We use freshness and renaming above, so we can write α ≤ ∀.
I We have decoupled from substitution. In symbols: σ 6≤ ∀.

7 / 20



Closer look at quantifiers

Perhaps you’re looking at the ‘adjoint’ characterisation:

a#Y ⇒ Y≤X ⇔ Y≤∀a.X

and comparing it with this, taken from p29 of “Introduction to
Categorical Logic” by Awodey and Bauer, where ϕ ≤ B × A and
ϑ ≤ B:

ϑ× A ≤ ϕ
========
ϑ ≤ ∀Aϕ

resembles
Y ≤ X (a#Y )
============

Y ≤ ∀a.X

But there is a crucial difference! To interpret ϑ and ϕ we must
have objects A and B to hand, and a category including arrows for
substitution and so forth.

8 / 20



Closer look at quantifiers

The category theory presentation hides structure—as it is designed
to—but the structure is still there.

In the nominal approach to quantification on which my recent
papers are based, it is not the case that σ is needed but perhaps
elided. It is irrelevant—or even absent.

We may decide we want to use it (see next slide), but we don’t
need σ to define ∀ or α.

We can calculate ∀a.X in a nominal lattice regardless of its
σ-algebra structure, if it has any at all.

9 / 20



Adding names

I use this decoupling twice:

I In the Stone dualities for first-order logic and the λ-calculus,
the construction of points precedes the construction of the
σ-action on predicates.
In a certain critical sense, we build ∀ before we build σ. See
Proposition 5.2.8 (eight characterisations of ∀) and
Definition 6.1.1 of [gabbay:repdul].

I In my claimed ConNF proof, terms and predicates are
interleaved (by comprehension: {a | φ} is a term if φ is a
predicate).
We can still give nominal semantics to ∀, even though we
have ‘not finished building’ our universe of terms. See
Figure 3 axiom (modall) of [gabbay:conqnf].

10 / 20



The big picture (so far)

I Everything depends on α, where α = # + π.
I α does not depend on σ:

[a]X = [b](X [a 7→b]) [a]X = [b](b a)·X .

I ∀ does not depend on σ:

∀a.X =
∧

u X [a:=U] ∀a.X =
∨
{X ′ ≤ X | a#X ′}.

I σ and ∀ do depend on α:

X [a 7→U] = ((b a)·X )[b 7→U] ∀a.X = ∀b.(b a)·X .

11 / 20



If there’s time: representation of sigma-algebras

a#Z ⇒ Z [a 7→X ] = Z
Z [a 7→a] = Z

a#Y ⇒ Z [a 7→X ][b 7→Y ] = Z [b 7→Y ][a 7→X [b 7→Y ]]
b#Z ⇒ Z [a 7→X ] = ((b a)·Z )[b 7→X ]

12 / 20



From sigma to amgis

Assume a sigma-algebra x , y , z , u, v ∈ X .
Consider its powerset p, q ∈ pow(X ).

Define an amgis-action on sets by:

x ∈ p[u←[a]⇔ x [a 7→u] ∈ p so
p[u←[a] = {x | x [a 7→u] ∈ p}.

The amgis-action is the functional preimage of the sigma-action.

(Amgis-algebras can be axiomatised, as sigma-algebras were
axiomatised above. See e.g. [gabbay:semooc].)

Think of p[u←[a] as

“p reprogrammed to believe that a is equal to u.”

13 / 20



From amgis back to sigma
Assume an amgis-algebra p, q ∈ P.
Consider its powerset X ,Y ∈ pow(P).

Define an action by:

p ∈ X [a 7→u]⇔ Nb.p[u←[b] ∈ (b a)·X so
X [a 7→u] = {p | Nb.(p[u←[b] ∈ (b a)·X )}.

The Nis the new-quantifier (Gabbay & Pitts 1999). It means ‘for
a fresh name’.

This generates a sigma-algebra on pow(P)! Think of X [a 7→u] as

“X reprogrammed to believe that a is equal to u — then hide/bind a.”

So taking powersets we alternate: sigma, amgis, sigma.

If X has sigma then pow(X ) has amgis, and pow(pow(X )) has
sigma and is also a nominal lattice.

14 / 20



Equality

Pleasingly, pow(pow(X )) can also interpret FOL equality:

u=v = {p∈pow(X ) | Nc .p[u←[c] = p[v←[c]}.

Nc .p[u←[c] = p[v←[c]} is a congruence property: it is precisely
that which is necessary to derive

p ∈ X [a 7→u] if and only if p ∈ X [a 7→v ].

Bearing in mind that p ∈ X [a 7→u]⇔ Nc .(p[u← [c] ∈ (c a)·X ).

15 / 20



Another equality

If X has sigma then pow(X ) has amgis and pow(pow(X )) has
sigma, and is a nominal lattice.

So we can write the following beautiful equality:

FOL = σ + powersets.

This equality is what [gabbay:semooc] says.

Thus, if X is a σ-algebra then pow(pow(X )) has rich sets
structure:

I It has all the structure of a model of first-order logic.
I It is a sound and complete model of first-order logic.

We use this construction in the Stone duality result, based on the
usual injection X ∈ X 7−→ {p | X ∈ p} ∈ pow(pow(X )).

16 / 20



Conclusions: the full big picture, so far

α = π+#

σ ≥ α

∀ ≥ α

∀ and σ are incomparable, but compatible.

σ= σ

= ≥ σ+ N

FOL = σ + powersets.

λ = σ + more stuff I haven’t described.

NF = σ + N+ G+ lots more stuff I haven’t even begun to
describe.

More to follow, I am sure.

17 / 20



Supplement: on duality

Consider Boolean algebra: the logic of ∧, ∨, and ¬, satisfying
axioms such as

¬¬φ = φ and φ ∧ (ψ ∨ ψ′) = (φ ∨ ψ) ∧ (φ ∨ ψ′).

Clearly conjunction ∧ ‘looks like’ sets intersection ∩ and
disjunction ∨ ‘looks like’ sets union ∪ and negation ¬ ‘looks like’
sets complement \.

But is there some model of Boolean algebras that is so wild that it
cannot be presented in these terms; so ∧ cannot mean ∩ and ∨
cannot mean ∪ and ¬ cannot mean \?

18 / 20



Supplement: on duality

Stone duality for Boolean algebra says: no, there is no such model.

In fact, every Boolean algebra B can be presented as a subset of
pow(pow(B)) where ∧ is ∩ and ∨ is ∪ and ¬ is pow(pow(B)) \ -.

And every map of Boolean algebras extends to a map of this
presentation.

(More technically: Boolean algebras correspond to compact totally
disconnected Hausdorff spaces; maps of Boolean algebras
correspond to continuous functions.)

Stone duality is a strong sanity guarantee, that logical symbols
correspond to sets operations. It gives one very precise,
fine-grained account of what a logic ‘really means’.

A full Stone duality result is typically hard work (≥50 pages). You
don’t need to understand the proof, to use the result!

19 / 20



Supplement: on duality

In brief, my three most recent papers work by giving Stone
representations/dualities for first-order logic, the λ-calculus, and
set theory (modulo ≈90 pages of maths per paper!).

I No Stone duality result for the λ-calculus had previously been
known. It was just not possible to engineer the proofs without
the fine control of names given by nominal techniques.

I The set theory I consider, Quine’s NF, could not be proved
consistent using ordinary mathematics. It consistency has
been an open problem since the 1930s.
(NF is fascinating in its own right. This is for another talk.)

So this isn’t just a new way of looking at old and well-understood
systems.

The nominal models help us to see and prove new things we
couldn’t see and prove before.

20 / 20


