Nominal techniques and
consistency of Quine's NF

Murdoch J. Gabbay

31 May 2016

/37

Introduction

Thanks to the LFCS Seminar series for inviting me here today.
Thank you all for coming.

Bibliography for this talk:

[semooc] “Semantics out of context”

[repdul] “Representation and duality of the untyped lambda-calculus”

[congnf] “Consistency of Quine’s New Foundations”

N

37

http://www.gabbay.org.uk/papers.html#semooc
http://www.gabbay.org.uk/papers.html#semooc
http://www.gabbay.org.uk/papers.html#repdul
http://www.gabbay.org.uk/papers.html#repdul
http://www.gabbay.org.uk/papers.html#conqnf
http://www.gabbay.org.uk/papers.html#conqnf

On naive set theory

Naive set theory has one rule; naive sets comprehension:

> If ¢ is a predicate, then
{a| ¢(a)} (the a such that ¢) is a set.

This is inconsistent by Russell’s famous 1901 paradox:

{a|aga} €{a|ada} <« {alada} ¢ {a|ada}
We deduce from this that L = T.

Thus ‘false is true’ follows from the axioms of naive set theory and
we can prove anything.

Naive set theory is inconsistent: there are no models of the theory
of naive sets, and too many theorems (we can prove anything).

Foundations are fundamental

In the 1930s this was a concern for relatively few people.

Nowadays, thanks in no small part to pioneering work done here at
LFCS (Laboratory for Foundations of Computer Science),
theorem-provers and programming languages implement these
foundations.

37

Foundations are fundamental

The quality of solutions that were developed to the problem of the
inconsistency of naive set theory (see next slide) determines the
quality of your working life.

Every time you fire up your computer and write an ML program or
an Isabelle proof, as | did during my own PhD, and trust (e.g.)
Isabelle not to prove 0 =1 and trust ML not to input 1+ 1 and
output 3, then you're living and breathing and trusting in a
computer implementation of a mathematical foundation that
somebody designed to be powerful enough to be useful but not so
powerful as to become inconsistent and prove anything.

5/37

Solutions

Solutions proposed:

» Zermelo-Fraenkel set theory (ZF sets).
Familiar as e.g. “the category of sets”, or Isabelle/ZF, and so
on.
‘Proved’ consistent by the von Neumann cumulative hierarchy
model; &, powerset(D),

» Type Theory.
Familiar as Higher-Order Logic (HOL), ML, and so on.
‘Proved’ consistent by taking sets and function-sets; ¢, ¢*,
(L),

» Quine's New Foundations (NF).
Restricts comprehension to stratifiable comprehension (more
on this in a moment).

37

NF is pretty

NF admits a universal set: {a| T}, the set of all sets, is a set.

Unlike ZF and HOL there is no need for an infinite hierarchy of
universes/types/classes. In NF {a| T} € {a| T}, and that's OK!

NF admits the lovely representation of the number n as ‘the set of
all n-element sets' (due to Frege, 1884).

» Nicer than the standard, brutal, efficient, ZF model:
2={o2,{2}}.

> Nicer even than the Church numeral at type a:
2, = Ma—a xa.f(f(x)).

NF is perfectly safe ... perhaps!

NF gets a bad rap. It has ‘bizzare’ properties such as being
non-wellfounded and being inconsistent with the Axiom of Choice.

This is unfair: the sets that are non-wellfounded and violate Choice
are sets that ZF and HOL do not concern themselves with. Initial
segments of the NF universe that look like ZF and HOL exist, and
are perfectly definable and usable.

Yes there are monsters in the full NF universe and some people
love to go and study them; but these sets won't bother you if you
don’t actively go looking for them.

Oh ...but we don't know if NF is consistent. Now that's
something to worry about.

NF is pretty

NF's specification is concise; just add ‘stratifiable’ to naive set
comprehension:

> If ¢ is a stratifiable predicate, then

{a]| #(a)} is a set.

37

Stratifiability

¢ is stratifiable when there exists an assignment of an integer level
to its variables such that:

» If a=b appears in ¢ then level(a) = level(b).
> If a€b appears in ¢ then level(a)+1 = level(b).

a ¢ a is unstratifiable; this blocks the comprehension of Russell's
paradox.

da,b.a# bAVc.c € d < (c =aV c = b) is stratifiable, so we can
collect all 2-element sets to form

2={d|Ja,b.a# bAVc.(cedec=aVc=Db)}.

10/37

Stratifiability

Russell = {a| a & a}
2={d|3a, b.atbAVc.(c € d < (c=aVc=b))}

11/37

Stratifiability

Russell = {al |- a%¢a'}

2 = {d! | 3a% b0.a%£h° A V0. (0 € dt & (P=aVvcP=h))}

12 /37

What is NF?

If we write axiom (Ext) and axiom-scheme (SC)

(Ext) VaVa.(a=be Ve (ceasw ceb))
(SC) daVb.(be ae ®) (O stratifiable)

then we can write
NF = (Ext) + (SC).

That is, NF is extensionality plus stratifiable comprehension.

What a lovely theory!

13 /37

NF-the-theory vs NF-the-universe

NF is a logical theory, and also a foundational universe.

For the purposes of a consistency proof, NF is a logical theory to
prove things about, such as consistency—not a universe to prove
things in.

14 /37

Go catch a very large set of atoms. ..

If X is a set write #X for the cardinality of X.

Let Jg = #N. Write 3, for the least cardinal larger than
#powerset"(N) for every n € N. So:

Jo = #N
< 31 = #powerset(N)
< Jp = #powerset(powerset(N)) < --- < 7,,.

Fix a large (size 3,,) set of atoms A.

» Write Vla.®(a) when & holds of all but x < J,, many atoms.

Read this as ‘for new a, ®(a)’.
» Write 9a.®(a) when ® holds of x = J,, many atoms.
Read this as ‘for generously many a, ®(a)'.

More on this later.

15 /37

Syntax

Syntactic classes are atoms a, b,c € A, terms s, and predicates ¢:

s,t,but=acA|{al ¢}
o = ¢AG | n¢ | va.g | tE€s

We call {a | ¢} a comprehension.

16 /37

Normalise syntax

Now consider the following rewrite on terms and predicates:

se{a| ¢} — ¢la—s].

Justified by the intuition that s is in the set of a such that ¢ if and
only if ¢p[a—s].

Theorem: Stratifiable terms are confluent and strongly normalising
under this rule. That is, they rewrite confluently and in finite time
to a unique normal form.

Proof sketch: Confluence is routine. Termination follows by
rewriting innermost highest level reducts. Use a multiset
lexicographic ordering, which is well-founded.

That stratifiability implies existence of normal forms appears to be
an original observation of my proof.

17 /37

Syntax of normal forms

We can easily characterise normal forms:

s,t,but=acAl{al ¢}
¢ A | 2o [va.g | tea

Note the t€a on the far right; this is the base case of induction on
normalised syntax.

Let a prepoint p € Prepoint be a set of assertions of the form t€a.
Then we provisionally interpret t€a by

[tea] = {p € Prepoint | (t€a) € p}.

Now we want to interpret A, -, =, and V, in the syntax above in
such a way as to validate all the axioms of NF.

This will be our model.

18 /37

Overview of our model

Our model will interpret a predicate as a set of points, where a
point is a prepoint plus conditions.

¢ — [¢] € powerset(powerset({t€a | all t,a})).

So how to interpret logical connectives A, -, =, and v?

Much of this was addressed in [semooc] and [repdul]. | will sketch
how it works.

19/37

Logic in nominal powersets (propositional part; high-level
view)

Conjunction and negation correspond to sets intersection and
complement, as usual.

oAl = [eIN 0] [=¢] = Points \ [¢]

(I haven't said which prepoints are points, or proved that any
points exist.)

Sets membership becomes substitution, thanks to our rewrite rule:

[{b|ve{al o}] = [¢la={b | ¥}]].

(This isn't trivial to check.)

20 /37

Logic in nominal powersets (quantifiers)

What about quantification [va.¢]? Following [semooc,repdul] we
write:

[va.¢] = {p | Nb.(b a)-¢ € p}.

It turns out that this has many equivalent presentations, including:

[va.¢] = | J{X' C [¢] | a#X'}.

Thus [va.¢] is the greatest subset of [¢] for which a is fresh, in the
sense of nominal sets.

This characterisation of quantification uses only U and #. It does
not depend on substitution!

21/37

Logic in nominal powersets (quantifiers)

This
[va.0] = | JIX' C [6] | a#X")

guarantees that:

_ WICIal (a#y)
[va.0] < [¢] [¢] C [va.9]

Note we do not use the familiar Tarski semantics that forall = ‘for
every possible value'. This would read as follows:

[va.g] = () [la—u]].

That depends on substitution. We can’t do that in NF because NF
is impredicative and u may be a comprehension {a | 1’} where 1 is
larger than ¢ — taking ¢[a—u] in a definition would be unhealthy
for inductive quantities.

Logic in nominal powersets (quantifiers)

The nominal semantics of V¥ works generally, just like conjunction
and complement.

If X, Y C X are subsets of a nominal set X we can define
va.X = J{X' € X | a#X'}

and then
Y CX (atY)

vaXxX <X Y CvaX
Thus va.X is the greatest subset of X for which a is fresh.

(This generalises further to nominal lattices; see [semooc].)

23 /37

Logic in nominal powersets (quantifiers)

Compare with p29 of “Introduction to Categorical Logic" by
Awodey and Bauer, where p < B x A and ¥ < B:
IxA<ep Y CX (atY)

_ resembles _
9 <Vap Y Cva X

They look similar, but there is a crucial difference!

To interpret ¥ and ¢ we must have objects A and B, and a
category including arrows for substitution and so forth. The Ve

corresponds to a Tarskian (), ¢[a—u], not to a nominal
U{X' C X | atX'}.

24 /37

Logic in nominal powersets (quantifiers)

Given an extra consistency condition on prepoints called generous
naming of internal sets we obtain a theorem (Theorem 8.15 in the

paper):

[va.¢] = () [¢[a—u]].

So by the end of my paper, Vv is doing what we expect and
quantifying over all terms.

It matters that this is a theorem, not a definition: the ¢ on the
right is smaller than the va.¢ on the left in

[va.0] = (X' € [4] | a#X'}.

So this is suitable for an inductive definition; the first equality
above is not, in NF.

25 /37

Substitution

An important lemma is that

[¢la—u]] = [¢][a—u].

This is non-trivial to prove.
Indeed, it is also non-trivial to state. What is [¢][a—u]?
We know that [a—u] applied to syntax ¢ is.

What is [a—u] applied to a set of (pre)points like [¢]?

26 /37

Substitution

Suppose X has a o-action x[a—u]. Suppose p € powerset(X) and
X € powerset(powerset(X)) [¢] is one of these X).

Then define:

x € plual & x[a—u] € p
p € X[a—u] < WNb.(p[ub] € (b)-X)

Amgis [u<—a] is the functional preimage of underlying substitution.
The o-action on X is obtained from the amgis action on p.

Studying the two definitions above is a talk in itself. The bottom
line is:

[¢][a—u] is obtained by ‘lifting" ¢[a—u] as above.

27 /37

New and Generous

A filter p generously names x when Da.(a=x € p), meaning that
a=x € p for J, many atoms a.

This guarantees that if Nla.¢(a) € p then ¢(a) € p for some a such
that a=x € p

The mechanics of the proof require the set of atoms to have
cardinality #A =2, = U, #2".

We unpack this further:

> WNa.d(a) holds when #{a | =®(a)} < 3.
» Da.®(a) holds when #{a| ®(a)} = 3,.
» W and O are dual: Na.®(a) & —2a.—d(a).

28 /37

The technical bits: equality and quantification

The technical rubber hits the mathematical road around
Definition 11.19, Proposition 11.30, and Definition 12.37.

We require extensionality, that

Vo,s,t,p.(p € [s=t] = (p € [sla=s]] = p € [Bla=t]])).

We enforce this by an inductive construction to build a maximally
consistent extensional set of equalities s=t.

We also require generous naming of internal sets, that for every p
and s,
Da.vt.(p € [tea] < p € [tes]).

We enforce this by another induction generating a maximally
consistent set of (t€a)s.

29 /37

The technical bits

Points (well-behaved prepoints) have two faces in my paper.

They have one presentation as {t€a | (t€a) € p} and another as
{s=t|p e [s=t]}.

These presentations are equivalent since p ‘believes’ t€a precisely
when p ‘believes’ {b | tea}={b| T}.

In the latter parts of the paper, we shuttle between the two
presentations; one buys extensionality and thus soundness for =,
the other buys generous naming of internal sets and thus
soundness for v.

30/37

About

my proof

Stratifiability gives a normal form for the rewrite

x €{a| ¢} — ¢la—x].

V modelled using nominal limits.

Sets extensionality handled by saturating extensionality
equalities to a greatest fixedpoint.

V-elimination (VE) (Va.¢) = ¢[a—x] modelled by logical dual
to VI called the ‘Generous’ quantifier o.

Generosity also corresponds to proof-theoretic strength.
Semantics of predicates as sets of points, where a point is a
maximally consistent set of predicates.

» Substitution modelled using ©-algebras.

Comprehension = atoms-abstractions. So [{a | ¢}] = [a][4].
Atoms extensionally equal to, but not syntactically identical
to, comprehensions: [a] = [{b | b€a}].

Two equivalent, but structurally distinct, notions of
‘maximally consistent sets’: one designed for = and the other
for (VE).

31/37

Conclusions

Obviously, a non-trivial proof. Plenty of moving parts which invite
further investigation.

Two threads running through it: those parts specific to consistency
of NF, and those having to do with logic and semantics more

generally.

Features of the proof include:

» Use of normal forms under rewrite s€{a | ¢} — ¢[a—s].
> Analysis of universal quantification V in terms of /1 and #
avoids problems with impredicativity and seems to differ

significantly from standard Tarski semantics.
» Use of sigma- and amgis-actions on nominal sets. Again,
something different.

32/37

This slide intentionally not left blank.

33/37

(Peek: the sigma-action on syntax)

(0and) and(X)[a—x] = and({ X[a—x] | X€X'})
(oneg) neg(X)[a—x] = neg(X[a—x])

(call) bitx = (all[p]X)[a—x]| = all[b](X[a—x])
(celtatm) a#y,x = elt(y, a)[a—atm(n)] = elt(y[a—atm(n)], n)
(celta) elt(y, a)[a—[d'|X] = X[a'—yla—[a']X]]
(oceltb) elt(y, b)[a—x] = elt(y[a—x], b)

Ol) chx= ([EX)[a—x] = [c](X[a—x])

(ca) atm(a)[a—x] = x

(ob) atm(b)[a—x] = atm(b)

In (celta), stratifiability ensures definition of substitution is
inductive. X may be larger than y, but a’ must have lower level
than a.

34 /37

An example: sigma

Nominal algebra (Gabbay & Mathijssen 2006) is like universal
algebra but over nominal sets, so enriched with nominal-style
names, freshness, and binding.

Let's look at an axiomatisation of substitution Z[a—X]:

a#Z = Zla—X]|=Z

Zla—a|=Z
atY = Z[a—X]|[b—Y] = Z[b—Y][a—X[b— Y]]
b#Z = Zla—X] = ((b a)-Z)[b—X]

Call a set T with an operation ¢ satisfying the axioms above, a
sigma-algebra.
Substitution is an operation of type T x A x T — T on a nominal

set T, satisfying the axioms above.

Just like group multiplication has type G x G — G or logical
conjunction has type B x B — B.

35/37

Sigma

atZ = Zla—X] = Z

Zla—a|=Z
atY = Zla—X]|[b—Y] = Z[b—Y][a—X[b—Y]]
b#Z = Z[a—X] = ((b a)-2)[b—X]

a#/ is a freshness side-condition. It corresponds to saying ‘if a is
not free in Z'.

(b a)-Z is a permutation. It corresponds to ‘swap b and ain Z'.
Both have natural interpretions over nominal sets.

As lemmas of the concrete syntactic model of syntactic substitution
:=, the axioms above are often called: garbage-collection, identity,
the substitution lemma, and a-renaming.

36 /37

Cheat-sheet

Stratifiability = x € {a | ¢} — ¢[a—x] terminates
V=W
3=0
Extensionality = gfp of “if x, y have same elements then add x = y
(VE) = (#A=#Sets)
[¢] = {p € points | ¢ € p}
[Bla—ull = {p | plusa] € [4]}
Sets = [A]Predicates

A is the set of atoms.

37/37

