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Introduction

Thank you all for coming.

Quine’s New Foundations is a set theory proposed in 1937 whose
consistency is described by the Stanford Encyclopaedia of
Philosophy as the oldest outstanding consistency question.

My claimed proof is online here:
http://www.gabbay.org.uk/papers.html#conqnf

This document is under review.
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On NF

NF has (at least) two elegant features:

1. It admits a universal set: the set of all sets is a set.
2. It uses a stratifiability condition to avoid Russell’s paradox,

whose meaning is mysterious.

NF is equivalent to TST+ (typed set theory with typical
ambiguity), which is a slight variant.

For the purposes of this very short talk, the differences are not
relevant.
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Syntax & axioms of NF

Syntactic classes are atoms a, b, c ∈ A, terms s, and predicates φ:

s, t, u ::= a ∈ A | {a | φ}
φ ::= φ∧∧∧φ | ¬¬¬φ | ∀a.φ | t∈∈∈s | s===t

We call {a | φ} a comprehension.
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Stratifiability

φ is stratifiable when there exists an assignment of an integer level
to its atoms such that

I if we extend to all terms by setting
level({a | φ}) = level(a)+1, then

I if s===t appears in φ then level(s) = level(t), and

I if t∈∈∈s appears in φ then level(t)+1 = level(s).

Let’s try to stratify two comprehensions,

1. first, Russell’s ‘set’, and
2. second, the set of all two-element sets:
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Stratifiability

Russell = {a | a 6∈ a}
2 = {d | ∃a, b.a 6=b ∧ ∀c.(c ∈ d ⇔ (c=a∨c=b))}
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Stratifiability

Russell = {a1 | a0 6∈ a1}
2 = {d1 | ∃a0, b0.a0 6=b0 ∧ ∀c0.(c0 ∈ d1 ⇔ (c0=a0∨c0=b0))}
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Axioms of NF

If we write axiom (Ext) for extensionality and axiom-scheme (SC)

for stratifiable comprehension

(Ext) ∀a.∀a.(a = b ⇔ ∀c .(c ∈ a⇔ c ∈ b))
(SC) ∃a.∀b.(b ∈ a⇔ Φ) (Φ stratifiable)

then we can write
NF = (Ext) + (SC).

In words:

NF = extensionality + stratifiable comprehension.
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Structure of my proof

My proof falls into roughly three parts:

1. Understand stratification.
2. Understand ∀ — ∀ is impredicative because the universal set

is a set.
3. Understand extensional equality — which uses the

impredicative universal quantification.
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Understanding stratification
NF’s stratifiability condition implies that the following rewrite is
strongly normalising:

s ∈ {a | φ} → φ[a:=s].

Theorem (G.): Stratifiable terms are confluent and strongly
normalising: they rewrite confluently and in finite time to a unique
normal form in the syntax

s, t, u ::= a ∈ A | {a | φ}
φ ::= φ∧∧∧φ | ¬¬¬φ | ∀a.φ | t∈∈∈a | s===t

This is the only property of stratifiability that my proof needs.

Thus, within my proof we have:

Stratification = We can work with normal forms

This equality takes us up to page 27 in my paper.
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Points-based model

The denotation [[φ]] of a predicate φ is a set of points.

A point p is a ‘well-behaved’ maximally consistent sets of
predicates (ultrafilters).

Normal forms give us one base case off-the-shelf:

[[t∈∈∈a]] = {p ∈ Points | (t∈∈∈a) ∈ p}.

(Without normal forms, [[t∈∈∈s]] might lead to an infinite chain as in
Russell’s paradox.)

The well-behavedness conditions for points — filter conditions —
contain subtle conditions to do with ∀.

I make heavy use of nominal techniques; a mathematical
foundation derived from Fraenkel-Mostowski set theory that
includes names/urelemente.
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Understand ∀

In particular, ∀ is characterised as follows:

[[∀a.φ]] =
⋃
{X ⊆ points | X ⊆ [[φ]], a#X}

In words: the meaning of ∀a.φ is the greatest set of points in the
meaning of φ for which a is fresh.

Note this definition is independent of quantification over all terms.
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The nominal interpretation of ∀

In this ‘nominal’ view, ∀ is a fresh colimit. In lattice terminology

∀a.x =
∨
{z | z ≤ x , a#z}.

This is consistent with a similar definition for ∧:

x ∧ y =
∨
{z | z ≤ x , z ≤ y}.

This turns up often enough, in enough different papers, in enough
useful situations, that I call it the nominal interpretation of ∀.

13 / 34



The nominal interpretation of ∀

The benefit of the nominal interpretation is that it is untroubled by
impredicativity:

I We can inductively calculate [[∀a.φ]] if we know [[φ]], since φ is
smaller than ∀a.φ.

I In the presence of impredicative quantification, such as
appears in NF, φ[a:=t] may be larger than φ. So we cannot
necessarily calculate [[φ[a:=t]]] even if we know [[φ]].

By the end of my proof, [[∀a.φ]] =
⋂

t [[φ[a:=t]]] is true.

But this is a nontrivial theorem.

This takes us to page 52 of my paper. It remains to understand
extensional equality.
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Equality

NF has two primitive predicate forms:

I t ∈ s.
I s = t.

These are equally expressive:

I s = t maps to a ∈ {b | s = t}
(for fresh dummy variables a and b) and

I t ∈ s maps to {b | t ∈ s} = {b | >}
(for a fresh dummy variable a).

Extensionality ‘likes’ ultrafilters based on the equality
predicate-form, but the rest of the paper (dealing with ¬, ∧, ∀, and
∈) ‘likes’ ultrafilters based on the sets membership predicate-form.
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The final third of the proof

The final third of the paper shows how to move between two
notions of filter, one based on ∈ and one based on =.

The proof of consistency for NF then reduces to constructing a
specific =-style filter which, when translated to ∈-style, is a point.

This construction relies heavily on nominal techniques once again.
Small support properties are used to place strong bounds on the
size of small-supported powersets.
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The final third of the proof

I will give just a taste of how it works: in nominal sets, both A the
set of names and powerset fs(A) are countable; basically this is
because any finitely-supported set of atoms is either finite or
cofinite.

A generalisation of this result gives us that if A is ‘large’ and X is
a ‘large’ nominal set then, in a certain sense, powersetss(X ) the
small-supported set of subsets of X is also ‘large’ (and not ‘larger’).

In other words, small-supported powersets have the same
cardinality as the original set. This use of support to control
cardinalities is crucial.

This is the most technical part of the paper, and is the only part of
the construction to be quite specific to consistency of NF. If
interested, trace uses of Lemma 10.27 in my paper.
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Conclusions

The proof of consistency of NF breaks down into three distinct
pieces:

1. A theory of normal forms based on stratifiability.
2. A theory of universal quantification ∀ differing from standard

Tarski semantics with the advantage of ‘playing nice’ with
impredicativity.
See my previous Logic Colloquium talk, of Monday.

3. Concrete counting arguments on nominal powersets, noting
that nominal powersets do not get large ‘too quickly’ because
of support restrictions.

Each of these three points has, I feel, independent interest.
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Supplement:
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Go catch a very large set of atoms. . .

If X is a set write #X for the cardinality of X .

Let i0 = #N. Write iω for the least cardinal larger than
#powersetn(N) for every n ∈ N. So:

i0 = #N
≤ i1 = #powerset(N)
≤ i2 = #powerset(powerset(N)) ≤ · · · ≤ iω.

Fix a large (size iω) set of atoms A.

I Write Na.Φ(a) when Φ holds of all but κ � iω many atoms.
Read this as ‘for new a, Φ(a)’.

I Write Ga.Φ(a) when Φ holds of κ = iω many atoms.
Read this as ‘for generously many a, Φ(a)’.
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Syntax normalisation procedure

Consider the rewrite on terms and predicates:

s ∈ {a | φ} → φ[a 7→s].

Justified by the intuition that s is in the set of a such that φ if and
only if φ[a 7→s].

Theorem: Stratifiable terms are confluent and strongly normalising
under this rule. That is, they rewrite confluently and in finite time
to a unique normal form.

Proof sketch: Confluence is routine. Termination follows by
rewriting innermost highest level reducts. Use a multiset
lexicographic ordering, which is well-founded.
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Syntax of normal forms

We can easily characterise normal forms:

s, t, u ::= a ∈ A | {a | φ}
φ ::= φ∧∧∧φ | ¬¬¬φ | ∀a.φ | t∈∈∈a

Note the t∈∈∈a on the far right; this is the base case of induction on
normalised syntax.

Let a prepoint p ∈ Prepoint be a set of assertions of the form t∈∈∈a.
Then we provisionally interpret t∈∈∈a by

[[t∈∈∈a]] = {p ∈ Prepoint | (t∈∈∈a) ∈ p}.

Now we want to interpret ∧∧∧, ¬¬¬, ===, and ∀, in the syntax above in
such a way as to validate all the axioms of NF.

This will be our model.
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Overview of our model

Our model will interpret a predicate as a set of points, where a
point is a prepoint plus conditions.

φ 7−→ [[φ]] ∈ powerset(powerset({t∈∈∈a | all t, a})).

So how to interpret logical connectives ∧∧∧, ¬¬¬, ===, and ∀?

Much of this was addressed in [semooc] and [repdul]. I will sketch
how it works.
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Logic in nominal powersets (propositional part; high-level
view)

Conjunction and negation correspond to sets intersection and
complement, as usual.

[[φ∧∧∧ψ]] = [[φ]] ∩ [[ψ]] [[¬¬¬φ]] = Points \ [[φ]]

(I haven’t said which prepoints are points, or proved that any
points exist.)

Sets membership becomes substitution, thanks to our rewrite rule:

[[{b | ψ}∈∈∈{a | φ}]] = [[φ[a 7→{b | ψ}]]].

(This isn’t trivial to check.)
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Logic in nominal powersets (quantifiers)

What about quantification [[∀a.φ]]? Following [semooc,repdul] we
write:

[[∀a.φ]] = {p | Nb.(b a)·φ ∈ p}.

It turns out that this has many equivalent presentations, including:

[[∀a.φ]] =
⋃
{X ′ ⊆ [[φ]] | a#X ′}.

Thus [[∀a.φ]] is the greatest subset of [[φ]] for which a is fresh, in the
sense of nominal sets.

This characterisation of quantification uses only Nand #. It does
not depend on substitution!
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Logic in nominal powersets (quantifiers)

This
[[∀a.φ]] =

⋃
{X ′ ⊆ [[φ]] | a#X ′}

guarantees that:

[[∀a.φ]] ⊆ [[φ]]

[[ψ]] ⊆ [[φ]] (a#ψ)
=============

[[ψ]] ⊆ [[∀a.φ]]

Note we do not use the familiar Tarski semantics that forall = ‘for
every possible value’. This would read as follows:

[[∀a.φ]] =
⋂
u

[[φ[a 7→u]]].

That depends on substitution. We can’t do that in NF because NF
is impredicative and u may be a comprehension {a | ψ} where ψ is
larger than φ — taking φ[a 7→u] in a definition would be unhealthy
for inductive quantities.
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Logic in nominal powersets (quantifiers)

The nominal semantics of ∀ works generally, just like conjunction
and complement.

If X ,Y ⊆ X are subsets of a nominal set X we can define

∀a.X =
⋃
{X ′ ⊆ X | a#X ′}

and then

∀a.X ⊆ X

Y ⊆ X (a#Y )
============

Y ⊆ ∀a.X
.

Thus ∀a.X is the greatest subset of X for which a is fresh.

(This generalises further to nominal lattices; see [semooc].)
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Logic in nominal powersets (quantifiers)

Given an extra consistency condition on prepoints called generous
naming of internal sets we obtain a theorem (Theorem 8.15 in the
paper):

[[∀a.φ]] =
⋂
u

[[φ[a 7→u]]].

So by the end of my paper, ∀ is doing what we expect and
quantifying over all terms.

It matters that this is a theorem, not a definition: the φ on the
right is smaller than the ∀a.φ on the left in

[[∀a.φ]] =
⋃
{X ′ ⊆ [[φ]] | a#X ′}.

So this is suitable for an inductive definition; the first equality
above is not, in NF.
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Substitution

An important lemma is that

[[φ[a 7→u]]] = [[φ]][a 7→u].

This is non-trivial to prove.

Indeed, it is also non-trivial to state. What is [[φ]][a 7→u]?

We know that [a 7→u] applied to syntax φ is.

What is [a 7→u] applied to a set of (pre)points like [[φ]]?
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Substitution

Suppose X has a σ-action x [a 7→u]. Suppose p ∈ powerset(X) and
X ∈ powerset(powerset(X )) [[φ]] is one of these X ).

Then define:

x ∈ p[u←[a]⇔ x [a 7→u] ∈ p
p ∈ X [a 7→u]⇔ Nb.(p[u← [b] ∈ (b )·X )

Amgis [u←[a] is the functional preimage of underlying substitution.
The σ-action on X is obtained from the amgis action on p.

Studying the two definitions above is a talk in itself. The bottom
line is:

[[φ]][a 7→u] is obtained by ‘lifting’ φ[a 7→u] as above.
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New and Generous

A filter p generously names x when Ga.(a===x ∈ p), meaning that
a===x ∈ p for iω many atoms a.

This guarantees that if Na.φ(a) ∈ p then φ(a) ∈ p for some a such
that a===x ∈ p

The mechanics of the proof require the set of atoms to have
cardinality #A = iω =

⋃
i<ω #2i .

We unpack this further:

I Na.Φ(a) holds when #{a | ¬Φ(a)} < iω.
I Ga.Φ(a) holds when #{a | Φ(a)} = iω.
I Nand Gare dual: Na.Φ(a)⇔ ¬ Ga.¬Φ(a).
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The technical bits: equality and quantification

The technical rubber hits the mathematical road around
Definition 11.19, Proposition 11.30, and Definition 12.37.

We require extensionality, that

∀φ, s, t, p.
(
p ∈ [[s===t]]⇒ (p ∈ [[φ[a:=s]]]⇔ p ∈ [[φ[a:=t]]])

)
.

We enforce this by an inductive construction to build a maximally
consistent extensional set of equalities s===t.

We also require generous naming of internal sets, that for every p
and s,

Ga.∀t.
(
p ∈ [[t∈∈∈a]]⇔ p ∈ [[t∈∈∈s]]

)
.

We enforce this by another induction generating a maximally
consistent set of (t∈∈∈a)s.
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About my proof
I Stratifiability gives a normal form for the rewrite

x ∈ {a | φ} → φ[a 7→x ].
I ∀ modelled using nominal limits.
I Sets extensionality handled by saturating extensionality

equalities to a greatest fixedpoint.
I ∀-elimination (∀E ) (∀a.φ)⇒ φ[a 7→x ] modelled by logical dual

to Ncalled the ‘Generous’ quantifier G.
Generosity also corresponds to proof-theoretic strength.

I Semantics of predicates as sets of points, where a point is a
maximally consistent set of predicates.

I Substitution modelled using σ-algebras.
I Comprehension = atoms-abstractions. So [[{a | φ}]] = [a][[φ]].
I Atoms extensionally equal to, but not syntactically identical

to, comprehensions: [[a]] = [[{b | b∈∈∈a}]].
I Two equivalent, but structurally distinct, notions of

‘maximally consistent sets’: one designed for === and the other
for (∀E ).
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Cheat-sheet

Stratifiability = x ∈ {a | φ} → φ[a 7→x ] terminates
∀ = N
∃ = G

Extensionality = gfp of “if x , y have same elements then add x = y”
(∀E) = (#A=#Sets)
[[φ]] = {p ∈ points | φ ∈ p}

[[φ[a 7→u]]] = {p | p[u←[a] ∈ [[φ]]}
Sets = [A]Predicates

A is the set of atoms.
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