
1/17

The language of stratified sets, Quine’s NF,
rewriting, and higher-order logic:

A brief tour

Murdoch J. Gabbay

Thanks to Jessica Ryan

8 May 2018

http://www.gabbay.org.uk

2/17

Introduction

This talk is based on two papers:

I The language of stratified sets is confluent and strongly
normalising. LMCS, to appear.
http://www.gabbay.org.uk/papers.html#lanssc

I Consistency of Quine’s NF using nominal techniques.
Submitted.
http://www.gabbay.org.uk/papers.html#conqnf

http://www.gabbay.org.uk/papers.html#lanssc
http://www.gabbay.org.uk/papers.html#conqnf

3/17

Naïve set theory

Naïve set theory is first-order logic with = and a binary membership
relation ∈ and comprehension terms {a | φ}.

Syntax of terms and predicates:

φ ::= ⊥ | φ⇒ φ | ∀a.φ | t ∈ s | s = t
t ::= a | {a | φ}

Axioms are standard for FOL with equality, along with:

I Extensionality ∀a, b.(∀c .(c ∈ a⇔ c ∈ b))⇒ a = b.
I Comprehension t ∈ {a | φ} ⇔ φ[a:=t].

4/17

Russell’s paradox

Naïve set theory is inconsistent. Define the Russell set

R = {a | a 6∈ a}.

Then Russell observed that

R ∈ R ⇔ R 6∈ R,

from which we conclude
⊥.

Oops.

5/17

(n-fold Russell)

Incidentally, this paradox is quite robust. For instance, define x ∈n y
for n ≥ 1 by

I x ∈1 y when x ∈ y and
I x ∈n+1 y when ∃x ′.(x ∈ x ′ ∧ x ′ ∈n y).

Then define the n-fold Russell set

Rn = {a | a 6∈n a}.

Then it is possible to prove that

Rn ∈n Rn ⇔ Rn 6∈n Rn.

6/17

Avoiding Russell’s paradox

Back in the 1930s, mathematical foundations were of interest to
philosopher mathematicians. This inconsistency was deeply
annoying to a select group.

Nowadays foundations are big business. For any interesting formal
specification, verification, or programming language, we need a
foundation for mathematics that won’t obviously derive ⊥. We
cannot base the world on naïve sets.

Solutions were developed:

I Zermelo set theory. Restrict to bounded comprehension
{a ∈ s | φ}.

I Higher-order logic: simply-typed λ-calculus with bool and nat.
I Quine’s NF. Restrict to stratifiable comprehension.

7/17

Stratifiability

A predicate φ is stratifiable when there is a way to assign levels in
N = {0, 1, 2, . . . } to variables and terms appearing in φ such that:

I If {a | φ′} appears in φ then level({a | φ′}) = level(a)+1.
I If t ∈ s appears in φ then level(s) = level(t) + 1.
I If s = t appears in φ then level(s) = level(t).

Quine’s NF permits a comprehension {a | φ} provided φ is
stratifiable.

8/17

Expressivity of Quine’s NF

The universal set
U = {a | >}

is stratifiable. So the universe of all elements is a set. And yes,
U ∈ U ; the universe is an element of itself.

This is fine: sets membership is not well-founded.

The cardinality 2

2 = {a | ∃b, c.b 6= c ∧ ∀a′.(a′ ∈ a⇔ (a′ = b ∨ a′ = c))}

is a set. This is the set of all two-element sets.

Similarly for 3, 4, and so forth.

Indeed we can form Card the set of all sets of equipollent
(have-the-same-cardinality) sets. This is the set of all cardinalities
and is itself a set!

9/17

Stratification vs stratifiability

Let the language of stratified sets (LSS) be first-order logic with =
and ∈ and comprehension {a | φ} where variables are indexed by
N = {0, 1, 2, . . . }.

Define level({a | φ}) = level(a)+1 as usual.

Call φ stratified when if t ∈ s appears in φ then
level(s) = level(t) + 1.

NF insists on stratifiability; LSS insists on stratification.

LSS can express 2i for every i ≥ 3 as follows:

2i = {ai-1 | ∃bi-2, c i-2.b 6= c ∧ ∀(a′)i-3).(a′ ∈ a⇔ (a′=b ∨ a′=c))}

Then level(2i) = i and there’s a copy of ‘the cardinality 2’ at every
level above 2.

10/17

Translation LSS → HOL

On types N = {0, 1, 2, . . . } we define:

I hol(0) = nat
I hol(i+1) = hol(i)→ bool

We might write hol(i) = powerset i (nat).

On predicates and terms we define:

I hol(ai) = a for some appropriate HOL variable a : hol(i)
I hol({a | φ}) = λa.hol(φ)
I hol(t ∈ s) = s t
I hol(∀a.φ) = ∀ hol(φ)
I hol(φ⇒ φ′) = ⇒ hol(φ) hol(φ′)
I hol(⊥) = ⊥

11/17

Translation LSS to HOL syntax

So LSS can be viewed as a syntactic subsystem of Higher-Order
Logic.

I Comprehension becomes λ-abstraction and βη. E.g.
t ∈ {a | φ} ⇔ φ[a:=t] is just
(λa.hol(φ))hol(t) = hol(φ)[a:=hol(t)] or more briefly
(λa.φ)t = φ[a:=t].

I Sets membership becomes application.
I Extensionality becomes functional extensionality.

To be clear: Quine’s NF is not a sub-logic of HOL . . .

12/17

LSS → HOL syntax

Quine’s NF is not a sub-logic of HOL.

This is because NF’s stratifiability condition engenders — in
translation to the stratified syntax LSS — an additional typical
ambiguity axiom, that if φ is a closed predicate then:

φ⇔ φ+

where φ+ is obtained by increasing the level of every variable in φ
by 1.

Consider φ = {3i , 4i} ∈ 2i+2 (should be valid). Then

φ+ = {3i+1, 4i+1} ∈ 2i+3.

13/17

NF 6→ HOL

Unfortunately hol(i+1) is larger than hol(i) by a Gödel
diagonalisation argument.

So the obvious translation of LSS into HOL, while revealing, does
not obviously imply consistency of NF.

Far from it! This has been an open problem for nearly 90 years.

I constructed a claimed model of NF in my second paper cited
above.

14/17

Language of Stratified Sets

Let us return to the Language of Stratified Sets. There are
interesting things to say just about this system.

Theorem 1: LSS with rewrite t ∈ {a | φ} → φ[a:=t] is confluent.

Theorem 2: LSS with same rewrite is strongly normalising.

Proof: Either

I by direct calculations (see my first paper cited above), or
I by the translation hol to HOL, proving that hol commutes

properly through substitution and reduction (e.g.
hol(φ[a:=t]) = hol(φ)[a:=hol(t)]) — and then using
confluence and strong normalisation for simply-typed
λ-calculus.

The direct confluence and strong normalisation proofs for LSS are
somewhat simpler than those for the full untyped λ-calculus.

15/17

LSS normal forms

Normal forms of LSS are defined as follows:

φ ::= ⊥ | φ⇒ φ | ∀a.φ | t ∈ a
s, t ::= a | {a | φ}.

The important part is t ∈ a; if we have t ∈ {a | φ} then this is not
a normal form.

LSS normal forms form what I call a sigma-algebra, meaning a
nominal algebra for substitution. The substitution action on normal
forms is quite attractive, in a baroque kind of way.

16/17

NF is confluent and strongly normalising

The language of NF stratifiable syntax; like LSS’s stratified syntax,
but variables are not assigned a priori levels

φ ::= ⊥ | φ⇒ φ | ∀a.φ | t ∈ s
s, t ::= a | {a | φ} φ stratifiable.

Theorem: Stratifiable syntax is confluent and strongly normalising
under the β-rewrite t ∈ {a | φ} → φ[a:=t] and its normal forms are
a sigma-algebra.

Proof: choose a stratification, translate to LSS, and reduce there.

17/17

Conclusions

NF is a nice system in which we can express nice things. I find it a
refreshing change of perspective from ZF and HOL.

Though long known, there remain elementary things to say about it,
such as to study its theory of rewriting.

(I claim that) NF has a model and is consistent.

