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Introduction

It’s my pleasure to be here. Thank you from both me and Andrew
for the award.

I’ve lived long enough in the Real World to appreciate it.
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Introduction

Nominal techniques go back to two papers with Andrew Pitts:

I A New Approach to Abstract Syntax with Variable Binding in
Formal Aspects of Computing, 2001.

I A new approach to abstract syntax involving binders in LICS
1999 (test-of-time award, 2019).

I know of two talks in this very ICALP conference using nominal
techniques:

I A Kleene Theorem for Nominal Automata by Paul Brunet and
Alexandra Silva.

I Varieties of Data Languages by Henning Urbat and Stefan
Milius.

There’s clearly real uptake here. Great. So what’s it all about?
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So what’s it all about?

There are several good sources for technical information on nominal
sets and their applications, including:

I A book by Andrew Pitts.
I A (draft) book by Mikołaj Bojańczyk.
I A survey article by myself.
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So what’s it all about?

Now, I might launch into a technical definition of nominal sets.
Your eyes would glaze, I would be frustrated, and twenty minutes
would pass.

So let’s not do that.

I might give examples of nominal structure:

I syntax of the untyped λ-calculus,
I Schanuel topos,
I orbit-finite sets,
I function spaces, abstraction sets, etc.

But let’s not do that, either.
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So what’s it all about?

I could say that nominal sets are an abstraction of syntax: elements
can contain names and have a permutation action and finite support
axiom modelling (abstractly) the ‘free variables of’ function.

True . . . but misleading:

I there are ‘nominal’ constructions with infinite support or no
support at all, and

I ones with finite support but which are non-syntactic.

‘Generalisaation of syntax-with-binding’ is an important motivating
example, but one which has tended to obscure the bigger picture.

Let’s try to say something different, arguably controversial, and
which is harder to find plainly stated in the literature:
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Names are ZFA atoms

I put it to you that the innovation of the two papers above
specifically, and of nominal techniques in general, is to say:

Names are a datatype

— specifically: the set of atoms in set theory with atoms (ZFA).

Let me elaborate . . .
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A picture of names

Recall the cumulative hierarchy:

V0 = ∅ Vα+1 = Vα ∪ pow(Vα) Vλ =
⋃
α<λ

pow(Vα)

This is what you’ve been told the universe is. Names do not exist in
this universe. Everything’s a set!

But in Computer Science, it’s not true that everything’s a set.
Names naturally arise everywhere, and it seems to me that our
universe looks more like this:

V0 = A = {a,b, c, . . . } Vα+1 = Vα ∪ pow(Vα) Vλ =
⋃
α<λ

pow(Vα)

Note: names a, b, c , . . . have an independent existence.
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A picture of names (typed version)

Similarly if you think in terms of types:

α ::= o | ι | α→ α
α ::= o | ι | A | α→ α

V0 = ∅ Vα+1 = Vα ∪ pow(Vα) Vλ =
⋃
α<λ pow(Vα)

V0 = A Vα+1 = Vα ∪ pow(Vα) Vλ =
⋃
α<λ pow(Vα)

There are very few native users of universes that aren’t a cumulative
hierarchy starting from a base type that looks like ∅ or N.

NFU and ZFA are examples of universes that differ from & extend
the above.
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A paper on this

I expand on these observations in a recent paper:

I Equivariant ZFA and the foundations of nominal techniques,
in press.
(Available from http://www.gabbay.org.uk/papers.html.)

The paper argues for Zermelo-Fraenkel sets with Atoms and Choice
(ZFAC) as a foundation for nominal techniques — and not
Fraenkel-Mostowski set theory.

In particular, nominal techniques are perfectly consistent with the
Axiom of Choice. See paper above.

http://www.gabbay.org.uk/papers.html
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The future

People are starting to ‘get’ nominal techniques. That’s wonderful; I
am delighted to see how these ideas are being extended.

Let’s talk about the medium-term future.

I dream of ZFA(C) / nominal sets taught in foundational courses,
instead of ZF(C) / sets. Perfectly possible now.

To my mind, a major outstanding issue is tooling: Specifically:

I Support for nominal datatypes in programming languages
(Haskell, OCaml, Python, . . . ).

I Support for nominal techniques in theorem-provers
(Isabelle, COQ, Agda, . . . )

Adding nominal support is more than programming a datatype of
names and permutations.
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The future

Adding support for nominal constructs requires more than only
programming up a datatype of names and permutations.

The issue is to extend the language or theorem prover — which, I
guarantee, is implicitly based on a ZF-style model — with relevant
ZFA structure, including at higher types.

This is a research problem. Get in touch if interested.

Thank you for listening.
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Appendix: definitions

. . . just in case somebody asks
or I want to refer to it . . .
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Nominal sets definition

Fix a countably infinite set of atoms A. Write ΣA for the symmetry
group of A (bijections π on A; also called atoms-permutations).

A ΣA-set X is:

I An underlying set X, with
I a group action ΣA × X→ X.

Example:

I A is a ΣA-set where π·a = π(a).
I Syntax of λ-terms over atoms as variable symbols is a ΣA-set

where π acts pointwise on the atoms in a term. So
π·(λa.λb.ab) = λπ(a).λπ(b).π(a)π(b).
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Nominal sets definition

Note that if X is a ΣA-set then so is power(X) the powerset of X,
by the pointwise action

π·X = {π·x | x ∈ X} where X ∈ power(X).

Example if a, b, c ∈ A then:

I π·{a, b, c} = {π(a), π(b), π(c)}.
I π·(A \ {a, b, c}) = A \ {π(a), π(b), π(c)}.
I π·

{
{a, b, c},A \ {a, b, c}

}
={

{π(a), π(b), π(c)},A \ {π(a), π(b), π(c)}
}
.
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Nominal sets definition

If X is a ΣA-set and x ∈ X and X ⊆fin X then define:

fix(x) = {π∈ΣA | π·x = x}
stab(X ) =

⋂
x∈X fix(x) = {π∈ΣA | ∀x∈X .π·x = x}

Easy to check that if A ⊆fin A (finite subset) then:

stab(A) = {π∈ΣA | ∀a∈A.π(a) = a}.

Define A$x and say A ⊆ A supports x ∈ X by:

A$x when stab(A) ⊆ fix(x)
⇔ ∀π∈ΣA.

(
∀a∈A.π(a) = a

)
⇒ π·x = x .
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Nominal sets definition
A nominal set X is a ΣA-set such that every x ∈ X has a unique
least finite supporting set supp(x) ⊆fin A.

Examples:

I A is a nominal set. If a ∈ A then {a}$a.
I Finite sets of atoms are a nominal set. If A ⊆fin A then A$A.
I Cofinite sets of atoms (complements of finite sets of atoms) are

a nominal set. If A ⊆fin A then A$A\A.
I Syntax is a nominal set (where variables symbols are atoms). t

is supported by the atoms mentioned in t (free or bound).
I Syntax quotiented by α-equivalence is a nominal set (where

variables symbols are atoms) [t]α.
fv(t)$[t]α (in words: an α-equivalence class [t]α is supported
by fv(t) the free variables of t).

I If X is a nominal set then power fs(X) the set of X ⊆ X with
finite support under the permutation action, is a nominal set.
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Freshness

If a ∈ A define a#x and say a is fresh for x by:

a#x when a 6∈ supp(x).

I If X is finite sets of atoms then a#X when a 6∈ X .
I If X is cofinite sets of atoms then a#X when a ∈ X .
I If X is syntax quotiented by α-equivalence then a#[t]α when

a 6∈ fv(t) (a is not free in t).

This concludes the definitions.


