
1/30

Programming with nominal techniques

Murdoch J. Gabbay

13 August 2019

http://www.gabbay.org.uk

2/30

Thanks

Thank you to the organisers Yukiyoshi Kameyama, Ohad Kammar,
and Jeremy Yallop for organising this school, for allowing me to
participate – and for asking me to give this talk.

3/30

Advert: Nominal Techniques Summer School

3rd School on Foundations of Programming and Software
Systems

(FoPSS 2019, co-located with HIGHLIGHTS 2019)
Warsaw, 10–15 September 2019

https://www.mimuw.edu.pl/~fopss19/

Johannes Borgström Nominal Process Calculi and Modal Logics
Bartek Klin Basic Nominal Techniques
Jamie Gabbay Advanced Nominal Techniques
Andrew Pitts Nominal Sets and Functional Programming
Maribel Fernández Nominal Rewriting and Unification
Mikołaj Bojańczyk Computation Theory with Atoms
Sławomir Lasota Computation Theory with Atoms II
Andrzej Murawski Nominal Game Semantics

https://www.mimuw.edu.pl/~fopss19/

4/30

Nominal techniques . . .

. . . are an approach to names and name-binding/abstraction
based on semantics in sets with atoms and Choice (ZFAC)
[gabbay:equzfn].

Examples of names in TCS include:

I Variable symbols: the ‘x ’ in λx .x .
I Pointers l (pointer = name + deref).
I Variables x (variable = name + substitution).
I Channel names a (cf. π-calculus).
I Thread IDs, file handles, & similar.
I Meta-variables (= name + capturing substitution).
I Wires in diagrams (cf. Ghica).
I Orbit-finite sets.
I . . . and more.

5/30

Nominal techniques . . .
. . . are an approach to names and name-binding/abstraction based
on semantics in sets with atoms and Choice [gabbay:equzfn]
(ZFAC set theory).

The theory is foundational. Thus, it lends itself to an account of
what names are — may be distinct from account of how names are
programmed on, or even account of how a particular kind of names
is programmed on.

Analogy: arguably numbers are the smallest set closed under 0 and
succ — yet implementations use e.g. binary strings.

The implementation may only approximate the mathematical model:

I E.g. numbers are unbounded but int64 is bounded.
I Floating point arithmetic may be imprecise, even for whole

numbers.
I Division is a partial function (divide-by-zero), but be

approximated by a total type like Int× Int→ Int.

6/30

On implementation

There may even be multiple implementations of the same model,
just as N underlines multiple numeric datatypes. Even lists have
this: e.g. mapped-to-memory vs. linked lists.

Possible for nominal techniques to exist in theory & user model —
yet datatypes implemented e.g. using de Bruijn indexes.

Other name-carrying structures, such as orbit-finite sets, might
require other concrete implementation.

7/30

A wee, provocative tangent

Misunderstandings arise when people fail to distinguish between
mathematical models and their implementations (if any).

I There are people who literally know that binding =
λ-abstraction, and

I other people who know that binding = numbers & de Bruijn,
and

I other people who know that binding doesn’t exist at all . . . it’s
all combinators!

I suspect the maths is more real than the implementation.

How else do you explain that there are people who know that
programming = Java, or programming = Python, or that effects
don’t exist (all programming is pure), or that only effects exist (pure
programs are just sugar)?

Here, maths, especially logic, (helps to) teach tolerance.

8/30

Nominal techniques

I won’t describe the mathematical nominal sets model of names and
binding in this talk. That’s for another lecture series. (Go to the
nominal summer school advertised above if you like!)

Here, I want to focus on implementation.

Previous efforts, such as in my PhD thesis, FreshML, and
FreshOCaml, have either tried to

I extend a language systematically with nominal constructs (thus
generating a dialect), or

I to deeply embed names and permutations inside an existing
language (thus costing the polymorphic advantage of the
nominal style).

I want to talk about how to host nominal techniques polymorphically
inside a language, as a guest, i.e. as a package, in a new way.

9/30

Key feature of nominal techniques
The nominal model of names is polymorphic over types.

I will sketch a package which provides constructs which

I may be weaker than full nominal techniques, and may be
unsafe (i.e. raise runtime errors if abused) but

I can be ‘just loaded’ and
I are type polymorphic.

Unclear how to do this. I will first:

I propose solution (high-level, language-independent), then
I suggest implementations.

Your challenge:

I Make it real; implement it.

My proposal follows:

10/30

Type-formers

Name : ∗ → ∗
Nom : ∗ → ∗ → ∗

I a : Name τ says
a is a name.
a carries a label of type τ (like ‘τ -ref’).

I x : Nom τ α says
x is an element in α.
Some τ -labelled names may be abstracted in x .

(Or Nominal : ∗ → ∗ where x : Nominalα means x is an element in
α with names of possibly many different types abstracted; stick to
one τ for concreteness.)

11/30

τ -labels as object-level typing info

τ -labels are optional, but convenient. Write () for the unique
element of the unit type. Then:

I a : Name () says
I am a name.
I have a label, but it’s trivial so call me a pure name.

I x : Nom () (Name ()) says
I am a pure name. I may be bound.

τ -labels are convenient because many TCS applications involve type
environments, as in ‘a : N’ — intuitively, N : τ and (a : N) ∈ Name τ .

So: τ -labels save us threading an environment of type annotations.

12/30

Constructors and destructors

Name : ∗ → ∗
Nom : ∗ → ∗ → ∗

fresh : ∀τ. τ → Nom τ (Name τ)
res : ∀τ, α. [Name τ]× α→ Nom τ α
label : ∀τ, α. Name τ → τ

[. . .] denotes lists.

I fresh(t) generates a fresh t-labelled name n and wraps it in an
n-binding.

I res(l , a) (where res = ‘restrict’) inputs a list of names l and
a : α, and wraps a in an l-binding.

I label(n) returns whatever value n points at.

13/30

Constructors and destructors

Name : ∗ → ∗
Nom : ∗ → ∗ → ∗

fresh : ∀τ. τ → Nom τ (Name τ)
res : ∀τ, α. [Name τ]× α→ Nom τ α
label : ∀τ. Name τ → τ

res is associative, the order of the elements in l doesn’t matter, and
we have weakening. The list is just a convenience.

res is dynamic, or capturing. E.g.

(λa.res([n], x)) n→ res([n], n).

14/30

Nom is a monad
Omit top-level type quantifiers henceforth.

Name : ∗ → ∗
Nom : ∗ → ∗ → ∗

fresh : τ → Nom τ (Name τ)
res : [Name τ]× α→ Nom τ α
label : Name τ → τ

return : α→ Nom τ α
>>= : Nom τ α→ (α→ Nom τ β)→ Nom τ β

I Nom τ - is a monad, for each τ .
I return = λa.res([], a) wraps a : α in an empty binding context.
I >>= is capture-avoiding.

E.g. monadic combination of res([n], n) with res([n], n) is
res([n1, n2], (n1, n2)). See ‘Nom equality’ slide below.

15/30

Unsafe operations on Nom (probably private)

unNom : Nom τ α→ α
fuse : Name τ → Name τ → Nom τ ()

unNom destroys binding. Unsafe because names can escape scope:

unNom res(n, a) → a so that
unNom (fresh ()) → unNom (res([n], n))→ n

Feature, or bug?

1. Feature! We create a new unique ID.
2. Bug! Bound name has escaped context. Runtime error.

(Trigger exception if n evaluated outside scope.)
3. Both! Name n is an exception, and res is its handler!

fuse is effectful. If fuse n n′ is called inside Nom τ monad, it fuses
n and n′, making them equal. We’ll use it for Abs, later.

16/30

Nom equality

Equality == on Nom τ follows the monadic structure and is
capture-avoiding. Illustrates safe use of unNom.

Let $ denote right-associative application. For x , y : Nom τ α,

x == y , unNom $ x >>= λa.
y >>= λb.
return(a == b).

Recall fresh()→ res([n], n).
Q. Which n?

17/30

Nom equality

Equality == on Nom τ follows the monadic structure and is
capture-avoiding. Illustrates safe use of unNom.

Let $ denote right-associative application. For x , y : Nom τ α,

x == y , unNom $ x >>= λa.
y >>= λb.
return(a == b).

Recall fresh()→ res([n], n).
Which n shouldn’t matter; it’s abstracted. Then:

fresh() == fresh() → ????
unNom $ fresh() >>= λa.return(a == a) → ????

18/30

Nom equality

Equality == on Nom τ follows the monadic structure and is
capture-avoiding. Illustrates safe use of unNom.

Let $ denote right-associative application. For x , y : Nom τ α,

x == y , unNom $ x >>= λa.
y >>= λb.
return(a == b).

Recall fresh()→ res([n], n) for suitable n. Then:

fresh() == fresh() → False
unNom $ fresh() >>= λa.return(a == a) → ????

19/30

Nom equality

Equality == on Nom τ follows the monadic structure and is
capture-avoiding. Illustrates safe use of unNom.

Let $ denote right-associative application. For x , y : Nom τ α,

x == y , unNom $ x >>= λa.
y >>= λb.
return(a == b).

Recall fresh()→ res([n], n) for suitable n. Then:

fresh() == fresh() → False
unNom $ fresh() >>= λa.return(a == a) → True

20/30

Abstraction

Abs : ∗ → ∗ → ∗

〈-〉- : τ → α→ Nom τ (τ × α)
〈n〉a , res([n], (n, a))

@@: Nom τ α→ (τ×α→ β)→ β

x@@f , unNom $ x >>= return ◦ f
〈n〉a @@ f = f (n, a) ← more readable

I In words, 〈n〉a is ‘(n, a) in an n-binding’. Call this abstraction.
I @@ is concretion. It unpacks an abstraction and applies f :

〈n〉a @@ f → f (n, a).

n can escape scope, e.g.

〈n〉n @@ λn, a.a→ n.

21/30

A simple program

〈n〉n @@ λn, a.〈n〉(〈n〉a, a)→ ????

Let’s mark the bindings:

〈n1〉n1 @@ λn, a.〈n1〉(〈n2〉a2, a1)

So:
〈n〉n @@ λn, a.〈n〉(〈n〉a, a) → 〈n1〉(〈n2〉n2, n1)

22/30

Abs equality

Abs τ - equality is not monadic! For x , y : Abs τ :

x == x ′ , unNom $ x >>= λn, a.
x ′ >>= λn′, a′.
fuse(n, n′) >>
return(a == a′)

Above, >>t is >>=λa.t where a is not free in t.

So in particular,

〈n〉a == 〈n〉a → True
〈n〉a == 〈n′〉a′ → True

23/30

A useful test program

test6 = unNom $ do -- Nom monad
-- make a fresh name
n <- fresh ()
-- create two abstractions
let (x1 ,x2) = (res [n] n

,res [n] n)
-- unpack them
y1 <- x1
y2 <- x2
-- check for equality
return $ y1 == y2

Should this compute True or False?

24/30

A useful test program

test6 = unNom $ do -- Nom monad
-- make a fresh name
n <- fresh ()
-- create two abstractions
let (x1 ,x2) = (res [n] n

,res [n] n)
-- unpack them
y1 <- x1
y2 <- x2
-- check for equality
return $ y1 == y2

This should compute False.

Equality is capture-avoiding and restriction captures dynamically.
Each of the two restrictions res([n], n) ‘owns’ its own local copy of n.

25/30

Abs-by-name vs. abs-by-function

-- fresh f returns the value of f at a
fresh name

atFresh :: t -> (Name t -> a) -> Nom t a
atFresh t f = f <$> fresh t

-- Abstract a name in an element
absByName :: Name t -> a -> Abs t a
absByName n a = Abs $ res [n] (n, a)

-- Apply f to a fresh element of type t
absFresh :: t -> (Name t -> a) -> Abs t a
absFresh t f = Abs .

atFresh t $ \m -> (m, f m)

26/30

Characteristic property of nominal abstraction

-- Concretion of an abstraction at a name .
Unsafe if name is not fresh .

conc :: Abs m a -> Name m -> a
conc a’ m’ = a’ @@ \m a -> unsafeUnNom $

fuseLeft [(m, m ’)]
>> return a

-- near inverse to <*>;
-- absFuncIn . absFuncOut = id but
-- not necessarily other way around
absFuncOut :: Default t =>

(Abs t a -> Abs t b) ->
Abs t (a -> b)

absFuncOut f = absFresh def
(\n a -> conc (f (absByName n a)) n)

This suggests our constructs are relatively powerful.

27/30

Let’s look at some code

Nominal_IOref.hs
SystemF.hs
Nominal_resumable_exceptions.hs

28/30

What’s a name?

Mathematically, a name n is a datum that is:

I dynamically bindable,
I testable for equality, and
I can be generated fresh.

But this doesn’t directly help write a Nominal package for Haskell,
Scala, Perl, OCaml, and so forth.

29/30

What’s a name?
I propose that a name n is a resumable exception.

A name is a widget that just holds a private ID. It remains passive
until triggered with one of two questions:

I A. What is your public ID?
E.g. == : Name τ → Name τ → Bool tests for equality of
public IDs.

I B. What is your label?
label : Name τ → τ queries this.

On query, a name raises an exception labelled with its private ID,
which is caught by the innermost handler holding the name’s private
ID – if this exists!

I recommend not insisting that a handler always exists, so that
names are data, not data-in-a-monadic-context.

The handler calculates and answer and then returns flow of control
to the query site, and execution resumes.

30/30

What’s a name?

I propose that a name n is a UNIX channel (e.g. stdio).

A name is a widget that just holds the private ID of the channel. It
remains passive until triggered with one of two questions:

I A. What is your public ID? E.g. == tests for equality of public
IDs.

I B. What is your label? label queries this.

In both cases it queries a channel handler on the private ID.

The handler calculates and answer and returns an answer.

Like cat "Hello world" > filename.txt.

