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This talk reports on a mathematical analysis of a blockchain-based
payments system called Stellar. The maths occupies the body of
this talk . . . but let’s motivate it first:

Part 0:
What’s a blockchain?
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A (brief) explanation of blockchain
A blockchain is a distributed database in which each state update
Bt+1, called a block, is signed with a cryptographic hash of the
preceding block Bt .

So: a blockchain is a block-chain in which each block
cryptographically points to its predecessor:

B0 B1 B2 B3 B4

B0 hash B1 hash B2 hash B3 hash

Say we’re at block B4 at time t=4. How do we progress the system
to create and agree on a suitable next block B5?

Users propose transactions (e.g. transfer n tokens from X to Y ) to
a queue. Validators validate and parcel these up into candidates B5,
B ′

5, B
′′
5 at e.g. 1500 transactions per candidate.

Validators then vote on which candidate B5 to add. It’s this voting
procedure that interests us.
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Consensus must be efficient, permissionless, . . .

This voting problem has some specific requirements:

▶ A new block needs chosen every few seconds.
So efficiency counts, this being a worldwide network with
limited bandwidth, and a design priority is to avoid recounts or
multiple voting rounds, since this costs time and bandwidth!

▶ The system is (usually) permissionless: new validators can join
and old validators can leave.

▶ It’s a consensus problem: that some agreement is reached on
the next block of transactions, matters more than which
particular block is chosen, but also . . .

▶ . . . the system needs to be resistant to participants trying to
manipulate or subvert the system, because . . .
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. . . and consensus must be robust

. . . transactions may carry value (e.g. payments, contracts). Hostile
behaviour includes:

▶ DoS (denial-of-service) the consensus algorithm! E.g.
vandalism, ransom, infrastructure DoS, or driving users to a
competing system.

▶ Selectively delay consensus for certain blocks; e.g. for
front-running, arbitrage, disadvantaging competitors, etc.

▶ Manipulate blocks while keeping them valid, e.g. to split (fork)
the system, double-spend tokens, reverse signed contracts, etc.

(In practice, Bitcoin and Ethereum are highly adversarial
environments. This talk will not be about concrete attacks on
blockchains; that’s another talk which I’m happy to deliver on
request.)

How to handle this?

https://web.archive.org/web/20220917014127/https://www.paradigm.xyz/2020/08/ethereum-is-a-dark-forest
https://web.archive.org/web/20220917014127/https://www.paradigm.xyz/2020/08/ethereum-is-a-dark-forest
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Who votes, and what coalitions can progress?

This is a deep and subtle question, but at a high level there are just
two questions:

1. How are votes allocated?
2. What are the progressing coalitions = sets of participants with

voting power to progress the system?1

Possible design decisions of real-world blockchain systems fall into
various categories. We consider three:

1I made up the term ‘progressing coalition’. The concept is like a ‘winning
coalition’ in social choice theory, but there’s a subtlety: the system is distributed,
asynchronous, and permissionless — so state updates must start local and be
asynchronously propagated (or not!). I therefore write ‘progress’ instead of ‘win’.
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Who votes, and what’s a progressing coalition?

(∝ = proportional to)

▶ Proof-of-Work (PoW):
Votes ∝ compute; progressing coalition = majority vote.
Unecological since compute = energy = CO2.

▶ Proof-of-Stake (PoS):
Votes ∝ stake (tokens/wealth); progressing coalition =
majority vote.
Explicitly equates wealth with governance power.2

▶ Proof-of-Agreement (PoA):
Votes ∝ reputation; progressing coalition = open
neighbourhood.
This is Stellar’s approach and it motivates semitopologies.

2An interesting wrinkle with PoS is that deciding who has stake is itself a
consensus problem. Technical solutions can get a bit baroque.
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Comments on the politics of consensus
With PoW and PoS, progressing coalitions are automatically
determined from compute and stake respectively. Nobody has to like
you or know who you are for you to be in their progressing coalition.

This encodes a libertarian governance structure which is amoral and
areputational.3

With PoA, progressing coalitions are explicitly specified, and
admission is by explicit peer invitation (as we shall see). Thus
reputation and trust — social constructs — are represented within
the system, distinct from computational power and wealth.

This creates incentives to curate reputation and to play not only
according to the rules but also according to peer’s moral
expectations — on pain of being removed from their progressing
coalitions. E.g. a front-running PoA validator may be exposed to
scandal and excluded from progressing coalitions (front-running
PoW and PoS validators can and do operate).

3I made this word up.
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Part 0: What’s a blockchain?

Part 1:
Semitopology, continuity, topens
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Definition of a semitopology

Definition. A semitopology is a pair (P,Open⊆pow(P)) of

▶ P a nonempty set of points and
▶ Open a set of open sets such that P ∈ Open and

O⊆Open ⇒
⋃
O∈Open.

Think: “topology, minus condition that ∩ of two opens is open”.

(Image credit: Wikipedia.)

https://commons.wikimedia.org/w/index.php?curid=3437020
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Key difference from topologies

In a topology, a minimal open neighbourhood of p is also least (any
two minimal open neighbourhoods of p can be intersected, which by
minimality is equal to both) . . .

. . . whereas in a semitopology, p may have multiple minimal open
neighbourhoods.

Semitopologies have a rich mathematical structure — there is much
more to them than being ‘weak topologies’, much as semigroups are
much more than ‘weak groups’.
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Relevance to consensus

▶ Interpret p ∈ P as a participant.
▶ Interpret an open neighbourhood p ∈ O ∈ Open as a

progressing coalition.

Worked example: Consider four participants, in two (least) opens
(M-i-L = Mother-in-Law):

We seek to progress on whether to wear a smart shirt (‘S-shirt’) or a
T-shirt (‘T-shirt’) for this lecture. If at least one of {Jamie,Wife}
and {Jamie,Son,M-i-L} agree, then we can progress.
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Relevance to consensus

Let’s consider the possibilities; list exhaustive modulo permuting
between ‘S-shirt’ and ‘T-shirt’:

▶ Son and M-i-L say ‘S-shirt’; Wife says ‘S-shirt’.
Jamie must vote ‘S-shirt’ to progress.

▶ Son and M-i-L say ‘T-shirt’; Wife says ‘S-shirt’.
Jamie can progress with ‘S-shirt’ or ‘T-shirt’.

▶ Son says ‘T-shirt’, M-i-L says ‘S-shirt’; Wife says ‘S-shirt’.
Jamie can only pregress with ‘S-shirt’ (or convince Son or
M-i-L to change vote).

▶ Son says ‘S-shirt’, M-i-L says ‘T-shirt’; Wife says ‘S-shirt’.
(As previous case.)
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Relevance to consensus

Note:

▶ In this example, an easy way for Jamie to progress is to agree
with Wife. That’s a special property of a two-element
progressing coalition. (Just goes to show: maths is the best
way to understand relationships.)

▶ Opens need not be uniform, e.g. my mother-in-law may have
her own opens (not illustrated above).
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Semitopologies are not obviously self-organising

Consider an arbitrary semitopology. As mentioned, the notion of
progress is local and asynchronous, and there are no restrictions on
how opens are formed.

One might expect this to block or dissolve into chaos, but
empirically it’s stable. It turns out there are solid mathematical
reasons for this . . .
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Continuity (textbook def)
Suppose (P,Open) and (P′,Open′) are semitopologies. Call a
function f : P → P′ continous at p ∈ P when

▶ ∀ open neighbourhood f (p) ∈ O ′,
▶ ∃ open neighbourhood p ∈ O ⊆ f -1(O ′).

∀O ′∈Open′.f (p)∈O ′ ⇒ ∃O∈Open.p∈O⊆f -1(O ′).

(Image credit: Britannica.)

https://cdn.britannica.com/59/96259-050-341EA342/concept-A-function-f-space-X-Y.jpg
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Continuous value assignments

Definition.

▶ Fix a set of values Val with the discrete semitopology
(Val, pow(Val)) in which {v} is open for every v ∈ Val.

▶ Call a function f : P → Val a value assignment.

Lemma. The following are equivalent:

▶ f continuous at p.
▶ f -1(f (p)) ∈ Open.
▶ An open agrees with p on its value f (p) ∈ Val.

This notion of consensus is an instance of topological continuity.

This links consensus to topology (1895, Poincaré) and we get a
slogan:

Consensus = Continuity.
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Something familiar: Hausdorff separation

Notation. Write O ≬ O ′ when O ∩ O ′ ̸= ∅.

You may be familiar with the (standard) Hausdorff property that
p ̸= p′ ∈ P have disjoint open neighbourhoods:

∃O,O ′ ∈ Open.(p ∈ O ∧ p′ ∈ O ′) ∧ ¬(O ≬ O ′).

(Image credit: Wikipedia.)

We introduce a novel anti-Hausdorff property:

https://commons.wikimedia.org/wiki/File:Hausdorff_space.svg
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Intertwined points: the anti-Hausdorff property
Definition. Call p and p′ intertwined and write p ≬ p′ when

∀O,O ′ ∈ Open.(p ∈ O ∧ p′ ∈ O ′) ⇒ O ≬ O ′.

So p ≬ p′ when all their open neighbourhoods intersect, i.e. the very
opposite of Hausdorff separation:

(Image credit: Wikipedia.)

https://upload.wikimedia.org/wikipedia/commons/thumb/a/ac/Venn's_four_ellipse_construction.svg/2560px-Venn's_four_ellipse_construction.svg.png
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Intertwined points: the anti-Hausdorff property

Q. Which points here are intertwined?
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Intertwined points: the anti-Hausdorff property

Q. Which points here are intertwined? A.-1≬0≬1≬2
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Consensus = continuity

Recall: values Val with the discrete semitopology in which {v} is
open for every v ∈ Val. A value assignment is a function
f : P → Val, and f : P → Val is continuous at p ∈ P when
f -1(f (p)) ∈ Open.

Lemma. If p ≬ p′ then f (p) = f (p′).

Proof. f -1(f (p)) ∋ p and f -1(f (p′)) ∋ p′ are open (by continuity),
and so (since p ≬ p′) they intersect.

Corollary 1. Continuous value assignments agree between
intertwined points.
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Transitive sets

Definition. Call S ⊆ P transitive when

∀O,O ′ ∈ Open.O ≬ S ≬ O ′ ⇒ O ≬ O ′.

Call S topen when it is transitive and open.

Lemma 1. S is topen ⇔ S is open and ∀p, p′∈S .p ≬ p′ (in words:
its points are pairwise intertwined).

Proof. Suppose S is topen and p, p′ ∈ S and p ∈ O and p′ ∈ O ′.
Then O ≬ S ≬ O ′ and so O ≬ O ′.

Conversely, if all points are pairwise intertwined and O ≬ S ≬ O ′

then p ∈ O and p′ ∈ O ′ for p, p′ ∈ S and so O ≬ O ′.

Topens are interesting because topen S must agree (by Lemma 1
and Corollary 1) and can progress (since it’s open).



24/36

Transitive sets

Lemma 2. S is a set of pairwise intersecting topens ⇒
⋃
S is

topen.

Proof. O ≬
⋃
S ≬ O ′ implies (wlog) O ≬ S ≬ S ′ ≬ O ′ for some

S , S ′ ∈ S, and by transitivity O ≬ O ′.

Theorem 1 (self-organisation).

1. (P,Open) partitions into disjoint maximal topen sets (plus
isolated points).

2. f : P → Val is constant on each partition, where it is
continuous.

Proof. By Lemma 2, if topen S and S ′ intersect then S ∪ S ′ is
topen. Also using Lemma 2, an increasing chain S0 ⊆ S1 ⊆ . . . of
topens is topen. The partitioning follows. Continuous value
assignments are constant from Lemma 1 (all points intertwined) and
Corollary 1 (value assignment is constant on intertwined points).
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Stellar computes continuous value assignments

Theorem 1 provides a high-level account of consensus in Stellar:

1. Let participants choose freely whom they trust.
2. Derive a semitopology from these local choices by taking

suitable unions (using witness functions; that’s another talk).
3. Compute continuous value assignments.

Theorem 1 proves a semitopology must self-organise into topen
communities of local consensus. Note that this resembles how in
real life, people self-organise into communities with shared values (+
outliers).
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Part 0: What’s a blockchain?

Part 1: Semitopology, continuity, topens

Part 2:
Community, kernel, dictator sets



27/36

The community of a point

▶ Call p regular when p ∈ T for some topen T (open of
intertwined points).

▶ If p is regular then by Theorem 1 it is contained in some
maximal topen.

▶ Call this maximal topen the community of p, where this exists,
and write it K (p).

By Theorem 1, if f : P → Val is continuous then

f (p) = f (K (p)).

In words: under continuous value assignments, a regular p agrees
with its community.
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The kernel of a regular p

Definition. An atom is a minimal nonempty open set. Write ∅⋖A
When A ∈ Open is an atom.

Definition. Suppose p is regular, so p ∈ K (p) ∈ Open. Define
ker(p) the kernel of p to be the union of the atoms in K (p). In
symbols:

ker(p) =
⋃

{A | ∅⋖ A ⊆ K (p)}.

The kernel of p is the union of those minimal opens guaranteed to
intersect any open within p’s community.



29/36

The kernel of a regular p

ker(p) =
⋃

{A | ∅⋖ A ⊆ K (p)}.

▶ -1 ≬ 0 ≬ 1 ≬ 2
▶ ker(-1) = ker(0) = ker(1) = ker(2) = {-1, 1, 2}
▶ ker(3) = {3} and ker(4) = {4}
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The kernel theorem (shades of Arrow’s theorem)

Theorem 2 (dominance of kernels). Suppose that:

▶ f : P → Val is a value assignment.
▶ p ∈ P is regular (so p ∈ K (p)).
▶ f is continuous at p and on some kernel atom ∅⋖ A ⊆ ker(p).

Then f (p) = f (A).

Proof. By assumption f -1(f (p)) ∋ p is open. K (p) is intertwined
and A ⊆ K (p), so f -1(f (p)) ≬ A. By Theorem 1, f (A) = f (p).

In words: a regular point p is dominated by any of its kernel atoms.

The kernel is a kind of dictator set. It doesn’t set out to be this,
and its points need not necessarily even know they are in a kernel.
This just emerges from the mathematics of semitopologies.
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Part 0: What’s a blockchain?

Part 1: Semitopology, continuity, topens

Part 2: Community, kernel, dictator sets

Part 3:
Conclusion
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Concluding remarks

With PoW and PoS, admission into progressing coalitions is
determined by compute and stake respectively. Nobody has to like
you or know who you are. This encodes an amoral, areputational,
libertarian governance structure.

With PoA, admission into progressing coalitions is explicit by peer
invitation. Reputation and trust are directly represented within the
system, distinct from computational power or wealth.

This creates incentives to curate reputation, and to behave not only
according to the rules but also according to peer’s moral
expectations.
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Concluding remarks

PoA is closer to how governance works in real life. Indeed, real
blockchains (even PoW/PoS ones) make their substantive
governance decisions based on trust and reputation!

It’s just not encoded in the system.

Ethereum provides two famous examples:

▶ When Ethereum forked (into ETC and ETH) after the DAO
hack, this was a social decision — by which I mean that the
society of Ethereum users debated and made a choice to fork
the blockchain. It was not decided within the chain itself.

▶ Similarly when Ethereum completed the Merge (switching from
PoW to PoS), again this was a social decision.

https://web.archive.org/web/20221020233757/https://www.gemini.com/cryptopedia/the-dao-hack-makerdao
https://web.archive.org/web/20221020233757/https://www.gemini.com/cryptopedia/the-dao-hack-makerdao
https://web.archive.org/web/20220930120243/https://www.forbes.com/sites/greatspeculations/2022/09/21/decision-to-switch-ethereum-to-proof-of-stake-may-have-been-based-on-misleading-energy-fud/
https://web.archive.org/web/20220930120243/https://www.forbes.com/sites/greatspeculations/2022/09/21/decision-to-switch-ethereum-to-proof-of-stake-may-have-been-based-on-misleading-energy-fud/
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Concluding remarks

There is a breed of blockchain-based distributed systems
distinguished by being

▶ permissionless (participants can freely leave and join),
▶ heterogeneous (distributed, asynchronous, diverse),
▶ algorithmic (practical on available hardware and networks), and
▶ robust (against hostile participants, network outage, etc),
▶ (for Stellar) dynamic (you can choose and change whom you

trust, based on observed behaviour).

Solutions to these constraints are far from value-neutral: they
reflect social views.

Solutions to these constratins are not purely academic: they are
responding to business imperatives in real time (e.g. security,
performance, competitiveness, and profitability), while seeking to
remain true to social ideals (e.g. fairness and decentralisation).
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Concluding remarks

I propose there may be much to say about the design, fair
governance, and mathematics of this new breed of distributed
systems. For example:

1. Can a rigorous connection be made between Theorem 2 and
Arrow’s theorem?

2. Computational applications of semitopologies to design efficient
reliable and robust blockchain algorithms.

3. Study of semitopology-based governance systems, especially for
the permissionless distributed asynchronous setting
characteristic of blockchains.

4. What are suitable and useful notions of path and homotopy in
semitopologies?

Anyone up for research into Semitopological Social Choice?



36/36

Bonus slide: Untrusted forks are automatically ignored

Theorem 1 does not guarantee that the semitopology consists of a
single topen; Indeed, a semitopology may partition into multiple
topens — this is a feature, not a bug!

Consider a topen T that is under attack. Yes the attacker can
create a topen J of junky opens, but J remains disjoint from T , so
the attack fails, having no effect on T .

With PoW or PoS systems, an attacker just has to offer work or
stake to be able to (try to) destabilise existing actors.

Theorem 1 gives Stellar a surprisingly robust assurance of stability:
an attacker must convince participants to explicitly trust it, by
adding it to their opens. It’s a different approach.


