
Restriction, Binding,

and

three presentations of the π-calculus

Murdoch J. Gabbay, December 2002

Cambridge University, UK,
www.cl.cam.ac.uk/˜mjg1003

Restriction and Binding February 11, 2003, www.cl.cam.ac.uk/˜mjg1003 1

Sigh

Sigh. Yet another talk by Jamie on the π-calculus.

There’s other things I can talk about but to be honest, this is what I want

to tell you today. Aaargh! I can’t help it!!

Sigh. Will he understand what he’s talking about?

Not completely, but I’ll try to make a good story of it.

Restriction and Binding February 11, 2003, www.cl.cam.ac.uk/˜mjg1003 2

Purpose of this talk

I will speak about two questions I have been trying to address

1. “What is the difference between binding and restriction?”

2. “What is it like to program in FreshML?” (Take a bow Mark)

in a series of FreshML programs called

pi-ltsb-1
pi-ltsb-2
pi-ltsb-3
pi-ltsb-4
Catchy, yes? Full lyrics available on my homepage. Let’s look at some

code.

Restriction and Binding February 11, 2003, www.cl.cam.ac.uk/˜mjg1003 3

pi-ltsb-1

bindable_type Name (* bound names *)
;
datatype Chan = (* channel names *)

Fn of string (* free names *)
| Bn of Name (* bound names *)

;
datatype Proc = (* pi-calculus processes *)

Par of Proc*Proc (* (P | P’) *)
| Res of <Name>Proc (* nu x (P) *)
| Rep of Proc (* !(P) *)
| Out of Chan*Chan*Proc (* out x y.(P) *)
| In of Chan*(<Name>Proc) (* in x(y).(P) *)
| Tau of Proc (* tau.(P) *)
| Ina (* 0 *)

;

Restriction and Binding February 11, 2003, www.cl.cam.ac.uk/˜mjg1003 4

pi-ltsb-1

datatype Trn = (* results of a transition step *)
Actt of Proc

| Acti of Chan*(<Name>Proc)
| Acto of Chan*Chan*Proc
| Actbo of Chan*(<Name>Proc);

B = Π + A× δΠ + A2 ×Π + A× δΠ

val comm1_rule_helper : Trn*Trn -> (Trn option) =
fn (Acto(x1,y1,q1) , Acti(x2,<a2>q2)) =>

if x1=x2 then
Some (Actt(Par(q1,rename(<a2>q2,y1))))

else None
| _ => None;

val close1_rule_helper : Trn*Trn -> (Trn option) =
fn (Actbo(x1,<a1>q1) , Acti(x2,<a2>q2)) =>

if x1=x2 then
Some (Actt(Res(<a2>(Par(concrete (<a1>q1) at a2,

q2)))))
else None

| _ => None;

Restriction and Binding February 11, 2003, www.cl.cam.ac.uk/˜mjg1003 5

pi-ltsb-1

Non-linear patterns would be nice, I’ll come back to that later. E.g.
compare:

val close1_rule_helper : Trn*Trn -> (Trn option) =
fn (Actbo(x1,<a1>q1) , Acti(x2,<a2>q2)) =>

if x1=x2 then
Some (Actt(Res(<a2>(Par(concrete (<a1>q1) at a2,

q2)))))
else None

| _ => None
;

val close1_rule_helper : Trn*Trn -> (Trn option) =
fn (Actbo(x,<a>q1) , Acti(x,<a>q2)) =>

Some (Actt(Res(<a>(Par(q1,q2)))))
| _ => None

;

Restriction and Binding February 11, 2003, www.cl.cam.ac.uk/˜mjg1003 6

pi-ltsb-1

val comm1_rule : (Trn list) -> (Trn list) -> (Trn list) =
mapMatrixPartial (fn trn1 => fn trn2 =>

comm1_rule_helper (trn1,trn2));

val close1_rule : (Trn list) -> (Trn list) -> (Trn list) =
mapMatrixPartial (fn trn1 => fn trn2 =>

close1_rule_helper (trn1,trn2));

val rec trns_of : Proc -> (Trn list) =
fn Ina => []

| (Tau(p)) => [Actt p]
| (Out(x,y,p)) => [Acto(x,y,p)]

...
| (Par(p1,p2)) => (par1_rule p2 (trns_of p1))++

(comm1_rule (trns_of p1) (trns_of p2))++
(close1_rule (trns_of p1) (trns_of p2))++

...
;

Restriction and Binding February 11, 2003, www.cl.cam.ac.uk/˜mjg1003 7

pi-ltsb-1

val open_rule_helper : <Name>Trn -> Trn option =
fn <n>(Acto(Fn s,Bn b,p’)) =>

if n#b then None else
Some (Actbo(Fn s,<n>p’))

| <n>(Acto(Bn c,Bn b,p’)) =>
if n#b then None else
if n#c then Some (Actbo(Bn c,<n>p’)) else

None
| _ => None

;

val rec trns_of : Proc -> (Trn list) =
fn Ina => []

| (Tau(p)) => [Actt p]
| (Out(x,y,p)) => [Acto(x,y,p)]
| (In(x,p_hat)) => [Acti(x,p_hat)]

...
| (Res(<n>p)) => open_rule (<n>(trns_of p))

...
end
;

Restriction and Binding February 11, 2003, www.cl.cam.ac.uk/˜mjg1003 8

pi-ltsb-3

bindable_type Name (* bound names *)
;
datatype Proc = (* pi-calculus processes *)

Par of Proc*Proc (* (P | P’) *)
| Res of <Name>Proc (* nu x (P) *)
| Rep of Proc (* !(P) *)
| Out of Name*Name*Proc (* out x y.(P) *)
| In of Name*(<Name>Proc) (* in x(y).(P) *)
| Tau of Proc (* tau.(P) *)
| Ina (* 0 *)

;
datatype Act =

Actt
| Acto of Name*Name
| Acti of Name*Name

;
type Trn = <Name>(Act*Proc) (* results of a transition step *)
;

Restriction and Binding February 11, 2003, www.cl.cam.ac.uk/˜mjg1003 9

pi-ltsb-3

val comm_close_1_rule_helper :
<Name>((Act*Proc)*(Act*Proc)) -> (Trn option) =
fn <n>((Acto(x1,a1),q1),(Acti(x2,a2),q2)) =>

if x1=x2 then
if a1#n then

Some (<n>(Actt,Par(q1,rename(<a2>q2,a1))))
else

Some (<n>(Actt,Res(<n>(Par(q1,rename(<a2>q2,a1))))))
else None

| _ => None
;
val rec trns_of : Proc -> (Trn list) =

fn Ina => []
| (Tau(p)) => [promoteAbs (Actt,p)]
| (Out(x,y,p)) => [promoteAbs (Acto(x,y),p)]
| (Par(p1,p2)) => let val trns1 = trns_of p1

and trns2 = trns_of p2
in ...

(comm_close_1_rule trns1 trns2)++
end

Restriction and Binding February 11, 2003, www.cl.cam.ac.uk/˜mjg1003 10

pi-ltsb-3

val comm_close_1_rule : (Trn list) -> (Trn list) -> (Trn list) =
mapMatrixPartial (

fn trn1 => fn trn2 =>
comm_close_1_rule_helper (pair_abs_abs_pair (trn1,trn2))

);

val pair_abs_to_abs_pair : (<Name>’x * <Name>’y) ->
<Name>(’x * ’y) =

fn (x_hat,y_hat) => let fresh c:Name in
(<c>(concrete x_hat at c, concrete y_hat at c)) end

;

Restriction and Binding February 11, 2003, www.cl.cam.ac.uk/˜mjg1003 11

pi-ltsb-3

val open_rule_helper : Name -> Trn -> Trn option =
fn n => fn <m>(Acto(a,b),q) =>

if b#n then
None else
Some ((Acto(a,b) , q))

| _ => None
;

val rec trns_of : Proc -> (Trn list) =
fn Ina => []

| (Tau(p)) => [promoteAbs (Actt,p)]
| (Out(x,y,p)) => [promoteAbs (Acto(x,y),p)]
| (In(x,<n>p)) => [<n>(Acti(x,n),p)]

...
| (Res(<n>p)) => open_rule n (trns_of p)

...
;

Restriction and Binding February 11, 2003, www.cl.cam.ac.uk/˜mjg1003 12

pi-ltsb-4

datatype Proc = (* pi-calculus processes *)
Par of Proc*Proc (* (P | P’) *)

| Rep of (Proc NM) (* !(nu as P) *)
| Out of Name*Name*Proc (* out x y.(P) *)
| In of Name*(<Name>Proc) (* in x(y).(P) *)
| Tau of Proc (* tau.(P) *)
| Ina (* 0 *)

;
type ProcNM = Proc NM
;

Call NMthe abstraction monad . ’a NM is in essence

<Name list>’a , or if you prefer [A-List]α.

Restriction and Binding February 11, 2003, www.cl.cam.ac.uk/˜mjg1003 13

pi-ltsb-4

datatype (’@a,’b)am =
amIn of ’b (* unit of the monad *)

| amAb of <’@a>((’@a,’b)am); (* add an abstraction *)

(* Monad lifting function: abs >> f applies f to the abstracted value
in abs and adds abs’s abstractions to the result. *)
infix >>;
val rec op>> : (’@a,’b)am * (’b -> (’@a,’c)am) -> (’@a,’c)am = fn

(amIn x, f) => f x
| (amAb(<a>y), f) => amAb(<a>(y >> f));

datatype Act =
Actt

| Acto of Name*Name
| Acti of Name*Name

;
type Trn = <Name>(Act*ProcNM) (* results of a transition step *)
;

Restriction and Binding February 11, 2003, www.cl.cam.ac.uk/˜mjg1003 14

pi-ltsb-4

val comm_close_1_rule_helper :
<Name>((Act*ProcNM)*(Act*ProcNM)) -> Trn option =
fn <n>((Acto(x1,a1),q1am) , (Acti(x2,a2),q2am)) =>

if x1=x2 then Some (<a2>(Actt,amAb (<n>(
(merge_am2 (q1am,q2am)) >> (fn (q1,q2) =>

amIn (Par(q1,rename(<a2>q2,a1)))
)))))

else None
| _ => None;

. . . et comme il faudrait . . .

val comm_close_1_rule_helper :
<Name>((Act*ProcNM)*(Act*ProcNM)) -> Trn option =
fn <n>((Acto(x1,a1),<l>q1) , (Acti(x1,a2),<l>q2)) =>

Some <a2>(Actt , <n::l> Par(q1 , rename(<a2>q2,a1)))
| _ => None;

Restriction and Binding February 11, 2003, www.cl.cam.ac.uk/˜mjg1003 15

pi-ltsb-4

val rec trns_of : Proc -> (Trn list) =
fn Ina => []

| (Tau(p)) => [promoteAbs (Actt,amIn p)]
| (Out(x,y,p)) => [promoteAbs (Acto(x,y),amIn p)]
| (In(x,<n>p)) => [<n>(Acti(x,n),amIn p)]
| (Par(p1,p2)) => let val trns1 = trns_of p1

and trns2 = trns_of p2
in

(par1_rule p2 trns1)++
(par2_rule p1 trns2)++
(comm_close_1_rule trns1 trns2)++
(comm_close_2_rule trns1 trns2)

end
| (Rep(pam)) =>

listAM(pam,fn (l,p) => rep_rule (l,p,pam) (trns_of p))
;

We work with Proc NM. trns of only ever gets applied as

pam >> (fn p => f(trns of p)) .

Restriction and Binding February 11, 2003, www.cl.cam.ac.uk/˜mjg1003 16

pi-ltsb-4

val rep_rule_helper : Name list*Proc*ProcNM -> Trn -> Trn option =
fn (l,p,pam) => fn

<n>(Acto(a,b),qam) =>
if list_in(a,l) then None
else if list_in(b,l) then Some (<n>(Acto(a,n),

listAb(l,qam >> (fn q => amIn(Par(rename(q,n),Rep(pam)))))))
else Some (<n>(Acto(a,b),

listAb(l,qam >> (fn q => amIn(Par(q,Rep(pam)))))))
| <n>(Acti(a,b),qam) =>

if list_in(a,l) then None
else Some (<n>(Acti(a,b),

listAb(l,qam >> (fn q => amIn(Par(q,Rep(pam)))))))
| <n>(Actt,qam) => Some(<n>(Actt,

listAb(l,qam >> (fn q => amIn(Par(q,Rep(pam)))))))
;

val rec listAb : ’@a list * (’@a,’b) am -> (’@a,’b) am = fn
([],x) => x

| (hd::tl,x) => amAb(<hd>(listAb(tl,x)))
;

Restriction and Binding February 11, 2003, www.cl.cam.ac.uk/˜mjg1003 17

pi-ltsb-4

. . . which is trying to be the following:

val rep_rule_helper : ProcNM -> Trn -> Trn option =
fn <l>p => fn

<n>(Acto(a,b),<l’>q) =>
if list_in(a,l) then

None
else if list_in(b,l) then

Some (<n>(Acto(a,n), <l@l’>Par(rename(q,n),Rep(<l>p))
else

Some (<n>(Acto(a,b), <l@l’>Par(q,Rep(<l>p))
| <n>(Acti(a,b),<l’>q) =>

if list_in(a,l) then
None

else
Some (<n>(Acti(a,b) , <l@l’>Par(q,Rep(<l>p))))

| <n>(Actt,<l’>q) => Some(<n>(Actt , <l@l’>Par(q,Rep(<l>p))))
;

Restriction and Binding February 11, 2003, www.cl.cam.ac.uk/˜mjg1003 18

Binding

The original FM binding type-former is [A]X . It has nice properties, for

example:

[A]A ∼= A + 1(1)

[A]X × [A]Y → [A](X × Y)(2)

[A](X × Y) → [A]X × [A]Y.(3)

(Here’s an obvious question: can we characterise the Schanuel Topos

as a topos with an abstraction endofunctor satisfying nice properties

such as those above. Matias Menni thought about that two years ago.

Perhaps it’s time to come back to the issue.)

Problem is, π-calculus restriction νa.p is not an instance of this

structure. For example (νa.p | νa.q) is structurally congruent to

νa, b.(p | q{a7→b}) (for appropriate fresh b) and not to νa.(p | q).

Restriction and Binding February 11, 2003, www.cl.cam.ac.uk/˜mjg1003 19

Restriction

So perhaps the original FM restriction type-former is [A-List]X .

Scope extrusion is an instance of ’x NM >> (fn x => f(x)) ,

monadic application.

Tangential observation 1: Abstraction by lists with garbage collection of

leading vacuous atoms commutes with finite limits and colimits but not

infinite limits and colimits, and not with function spaces. This is my bet

for a ‘restriction’ type-former.

(What is ‘garbage collection’? νab. p ∼= νa. p if b 6∈ fn(p).)

Tangential observation 2: In FMG we could have abstraction by

ω-streams of atoms. This has the properties both of a restriction and an

abstraction. Perhaps that’s why I thought it was so neat.

Restriction and Binding February 11, 2003, www.cl.cam.ac.uk/˜mjg1003 20

pi-ltsb-3

Obvious question: how well does [A-List]− model restriction? Can we

axiomatise/program with abstraction and restriction type-formers using

[A]− and (a relative of) [A-List]− as models?

Another question: can we apply programming like we saw in

pi-ltsb-4 to work by Cardelli ed altri maestri programming with

tree structures with hiding.

Restriction and Binding February 11, 2003, www.cl.cam.ac.uk/˜mjg1003 21

