Restriction, Binding, and
three presentations of the π-calculus
Murdoch J. Gabbay, December 2002
Cambridge University, UK,
www.cl.cam.ac.uk/~mjg1003

Sigh. Yet another talk by Jamie on the π-calculus.
There's other things I can talk about but to be honest, this is what I want to tell you today. Aaargh! I can't help it!!

Sigh. Will he understand what he's talking about?
Not completely, but l'll try to make a good story of it.

I will speak about two questions I have been trying to address

1. "What is the difference between binding and restriction?"
2. "What is it like to program in FreshML?" (Take a bow Mark)
in a series of FreshML programs called
pi-ltsb-1
pi-ltsb-2
pi-ltsb-3
pi-ltsb-4
Catchy, yes? Full lyrics available on my homepage. Let's look at some code.
```
bindable_type Name
(* bound names *)
;
datatype Chan = (* channel names *)
        Fn of string (* free names *)
    | Bn of Name
;
datatype Proc = (* pi-calculus processes *)
        Par of Proc*Proc
(* (P | P') *)
        Res of <Name>Proc
(* nu x (P) *)
    Rep of Proc
    Out of Chan*Chan*Proc
(* !(P) *)
(* out x y.(P) *)
    In of Chan*(<Name>Proc)
(* in x(y).(P) *)
    Tau of Proc
(* tau.(P) *)
    Ina
(* 0 *)
;
```

datatype Tr =
(* results of a transition step *)
Actt of Proc
Acti of Chan*(<Name>Proc)
Acto of Chan*Chan*Proc
Actbo of Chan*(<Name>Proc)
$\mathcal{B}=\Pi+\mathbb{A} \times \delta \Pi+\mathbb{A}^{2} \times \Pi+\mathbb{A} \times \delta \Pi$
val comm1_rule_helper : Trn*Trn $->$ (Trn option) =
fn $(\operatorname{Acto}(x 1, y 1, q 1)$, $\operatorname{Acti}(x 2,<a 2>q 2))=>$
if $x 1=x 2$ then
Some (Actt($\operatorname{Par}(q 1, \operatorname{rename}(<a 2>q 2, y 1))$))
else None
| _ => None;
val close1_rule_helper : Trn*Trn $->$ (Trn option) =
fn (Actbo(x1,<a1>q1) , Acti (x2,<a2>q2)) =>
if $x 1=x 2$ then
Some (Actt(Res (<a2>(Par (concrete (<a1>q1) at a2, q2))))
else None
| _ => None;

Non-linear patterns would be nice, l'll come back to that later. E.g compare:

```
val close1_rule_helper : Trn*Trn -> (Trn option) =
    fn (Actbo(x1,<a1>q1), Acti(x2,<a2>q2) ) =>
        if x1=x2 then
            Some (Actt(Res(<a2>(Par(concrete (<a1>q1) at a2,
                                    q2)))))
            else None
        | _ => None
;
val close1_rule_helper : Trn*Trn -> (Trn option) =
    fn ( Actbo(x,<a>q1) , Acti(x,<a>q2) ) =>
            Some (Actt(Res(<a>(Par(q1,q2)))))
        | _ => None
;
```

```
val comm1_rule : (Trn list) -> (Trn list) -> (Trn list) =
    mapMatrixPartial (fn trn1 => fn trn2 =>
                                    comm1_rule_helper (trn1,trn2));
val close1_rule : (Trn list) -> (Trn list) -> (Trn list) =
    mapMatrixPartial (fn trn1 => fn trn2 =>
                                    close1_rule_helper (trn1,trn2));
val rec trns_of : Proc -> (Trn list) =
    fn Ina => []
        (Tau(p)) \(\quad=>\) [Actt \(p]\)
        (Out \((x, y, p)) \Rightarrow[\) Acto \((x, y, p)]\)
    | (Par(p1,p2)) => (par1_rule p2 (trns_of p1))++
                                    (comm1_rule (trns_of p1) (trns_of p2))++
                                    (close1_rule (trns_of p1) (trns_of p2))++
```

;

```
val open_rule_helper : <Name>Trn -> Trn option =
    fn <n>(Acto(Fn s,Bn b, \(\left.\mathrm{p}^{\prime}\right)\) ) =>
        if \(n \# b\) then None else
                            Some (Actbo (Fn \(\left.s,<n>p^{\prime}\right)\) )
        | <n>(Acto(Bn c,Bn b, \(\left.p^{\prime}\right)\) )
        if n\#b then None else
        if \(n \# c\) then Some (Actbo (Bn \(\left.c,<n>p^{\prime}\right)\) ) else
                                None
    1
;
val rec trns_of : Proc -> (Trn list) =
    fn Ina => []
        (Tau(p)) \(\quad \Rightarrow\) [Actt p]
        (Out (x,y,p)) => [Acto(x,y,p)]
        (In(x,p_hat)) \(=>\) [Acti(x,p_hat)]
        | (Res \((<n>p)) \quad=>\) open_rule (<n>(trns_of p))
    end
;
```

```
bindable_type Name
    ;
datatype Proc =
    Par of Proc*Proc
        Res of <Name>Proc
        Rep of Proc
        Out of Name*Name*Proc
        In of Name*(<Name>Proc)
        Tau of Proc
        Tau
        (* bound names *)
        (* pi-calculus processes *)
    (* (P | P') *)
    (* nu x (P) *)
    (* !(P) *)
    (* out x y.(P) *)
    (* in x(y).(P) *)
    (* tau.(P) *)
    (* 0 *)
;
datatype Act =
        Actt
        | Acto of Name*Name
        Acti of Name*Name
    ;
    type Trn = <Name>(Act*Proc) (* results of a transition step *)
;
```

```
val comm_close_1_rule_helper
    <Name>((Act*Proc)*(Act*Proc)) -> (Trn option) =
    fn <n>((Acto(x1,a1),q1),(Acti(x2,a2),q2)) =>
        if x1=x2 then
            if al#n then
                Some (<n>(Actt, Par( q1,rename (<a2>q2,a1) )))
            else
                Some (<n>(Actt, Res(<n>(Par( q1,rename(<a2>q2,a1) ))) ))
    else None
    _ => None
; -
val rec trns_of : Proc -> (Trn list) =
    fn Ina => []
        (Tau(p)) => [promoteAbs (Actt,p)]
        (Out (x,y,p)) => [promoteAbs (Acto(x,y),p)]
        (Par(p1,p2)) => let val trns1 = trns_of p1
                        and trns2 = trns_of p2
                in ...
                    (comm_close_1_rule trns1 trns2)++
        end
```

val comm_close_1_rule : (Trn list) -> (Trn list) -> (Trn list) =
mapMatrixPartial (
fn trn1 $=>$ fn trn2 =>
comm_close_1_rule_helper (pair_abs_abs_pair (trn1,trn2))
) ;
val pair_abs_to_abs_pair : (<Name>'x * <Name>'y) ->
$<$ Name> ('x * 'y) =
fn (x_hat,y_hat) => let fresh c:Name in
$\left(\langle c\rangle\left(c o n c r e t e x _h a t\right.\right.$ at c, concrete $y _h a t$ at $\left.c\right)$) end
;

```
```

val open_rule_helper : Name -> Trn -> Trn option =
fn $\mathrm{n}=>\mathrm{fn}<\mathrm{m}>(\operatorname{Acto}(\mathrm{a}, \mathrm{b}), \mathrm{q})$ =>
if b\#n then
None else
Some (($\operatorname{Acto(a,b),~q~))~}$
| _ => None
;
val rec trns_of : Proc -> (Trn list) =
fn Ina $\quad \Rightarrow$ []
(Tau(p)) $\quad>$ [promoteAbs (Actt, p)]
(Out $(x, y, p))=>$ [promoteAbs (Acto $(x, y), p)]$
(In $(x,<n>p)) \quad=>[<n>(\operatorname{Acti}(x, n), p)]$
...
(Res $(<n>p)) \quad=>$ open_rule n (trns_of p)
;

```
```

datatype Proc =
Par of Proc*Proc
Rep of (Proc NM)
Out of Name*Name*Proc
In of Name*(<Name>Proc)
Tau of Proc
Ina
(* pi-calculus processes *)
(* (P | P') *)
(* !(nu as P) *)
(* out x y.(P) *)
* in x(y).(P) *)
(* tau.(P) *)
(* 0 *)
;
type ProcNM = Proc NM
;

```

Call NM the abstraction monad. ' a NM is in essence
\(<\) Name list>' a, or if you prefer \([\mathbb{A}-L i s t] \alpha\).
```

datatype ('@a,'b)am =
amIn of 'b (* unit of the monad *)
| amAb of '@a(('@a,'b)am); (* add an abstraction *)
(* Monad lifting function: abs >> f applies f to the abstracted value
in abs and adds abs's abstractions to the result. *)
infix >>;
val rec op>> : ('@a,'b)am * ('b -> ('@a,'c)am) -> ('@a,'c)am = fn
(amIn x, f) => f x
| (amAb}(<a>y), f) => amAb (<a> (y >> f))
datatype Act =
Actt
Acto of Name*Name
Acti of Name*Name
;
type Trn = <Name>(Act*ProcNM) (* results of a transition step *)
;

```
```

pi-ltsb-4

```
val comm_close_1_rule_helper :
<Name> ((Act*ProcNM)* (Act*ProcNM)) -> Trn option =
\(\mathrm{fn}<\mathrm{n}>(\) (Acto \((\mathrm{x} 1, \mathrm{a} 1), \mathrm{q} 1 \mathrm{am})\), (Acti(x2,a2),q2am) ) => if \(x 1=x 2\) then Some (<a2>(Actt, amAb (<n> (
\((\) merge_am2 \((q 1 a m, q 2 a m)) \gg(f n(q 1, q 2)=>\) amIn (Par ( q1, rename (<a2>q2, a1) ) )
)) )) )
else None
| _ => None;
. et comme il faudrait . . .
val comm_close_1_rule_helper :
<Name> ((Act*ProcNM)* (Act*ProcNM)) \(->\) Trn option =
fn \(<n>(\) (Acto \((x 1, a 1),<l>q 1),(\) Acti \((x 1, a 2),<l>q 2)\) ) =>
Some <a2>(Actt, <n: : l> Par (q1, rename (<a2>q2,a1)) )
| _ => None;
val rec trns_of : Proc -> (Trn list) =
fn Ina \(\quad=>\) [ \((\operatorname{Tau}(p)) \quad=>\) [promoteAbs (Actt,amIn \(p)\) ] \((\operatorname{Out}(x, y, p))=>\) [promoteAbs (Acto(x,y), amIn p)]
\((\operatorname{In}(x,<n>p)) \Rightarrow[<n>(\operatorname{Acti}(x, n), \operatorname{amIn} p)]\)
(Par(p1,p2)) => let val trns1 = trns_of p1
and trns2 \(=\) trns_of p2
in
(par1_rule p2 trns1) ++
(par2_rule p1 trns2) ++
(comm_close_1_rule trns1 trns2) ++
(comm_close_2_rule trns1 trns2)
end
| (Rep (pam)) => listAM(pam,fn (l,p) => rep_rule (l,p,pam) (trns_of p))
;
We work with Proc NM. trns_of only ever gets applied as pam \(\gg\) (fn \(p=>f\left(t r n s \_o f p\right)\) ).
```

val rep_rule_helper : Name list*Proc*ProcNM -> Trn -> Trn option =
fn (l,p,pam) => fn
<n>(Acto(a,b),qam) =>
if list_in(a,l) then None
else if list_in(b,l) then Some (<n>(Acto(a,n),
listAb(l,qam >> (fn q => amIn(Par(rename (q,n),Rep(pam)))))))
else Some (<n>(Acto(a,b),
listAb(l,qam >> (fn q => amIn(Par(q,Rep(pam)))))))
| <n>(Acti(a,b), qam) =>
if list_in(a,l) then None
else Some (<n>(Acti(a,b),
listAb(l,qam >> (fn q => amIn(Par(q,Rep(pam)))))))
| <n> (Actt,qam) => Some(<n> (Actt,
listAb(l,qam >> (fn q => amIn(Par(q,Rep(pam)))))))
;
val rec listAb : '@a list * ('@a,'b) am -> ('@a,'b) am = fn
([],x) => x
| (hd::tl,x) => amAb (<hd> (listAb(tl,x)))
;

```
. . which is trying to be the following:
```

val rep_rule_helper : ProcNM -> Trn -> Trn option =
fn <l>p => fn
<n>(Acto(a,b) ,<l'>q) =>
if list_in(a,l) then
None
else if list_in(b,l) then
Some (<n>(Acto(a,n), <l@l'>Par(rename (q,n),Rep(<l>p))
else
Some (<n>(Acto(a,b), <l@l'>Par(q,Rep(<l>p))
| <n>(Acti (a,b),<l'>q) =>
if list_in(a,l) then
None
else
Some (<n>(Acti(a,b) , <l@l'>Par(q,Rep(<l>p))))
| <n>(Actt, <l'>q) => Some(<n>(Actt , <l@l'>Par(q,Rep(<l>p))))
;

```

The original FM binding type-former is \([\mathbb{A}] X\). It has nice properties, for example:
\[
\begin{equation*}
[\mathbb{A}] \mathbb{A} \cong \mathbb{A}+1 \tag{1}
\end{equation*}
\]
\[
\begin{equation*}
[\mathbb{A}] X \times[\mathbb{A}] Y \rightarrow[\mathbb{A}](X \times Y) \tag{2}
\end{equation*}
\]
(3)
\[
[\mathbb{A}](X \times Y) \rightarrow[\mathbb{A}] X \times[\mathbb{A}] Y
\]
(Here's an obvious question: can we characterise the Schanuel Topos as a topos with an abstraction endofunctor satisfying nice properties such as those above. Matias Menni thought about that two years ago. Perhaps it's time to come back to the issue.)

Problem is, \(\pi\)-calculus restriction \(\nu a . p\) is not an instance of this structure. For example ( \(\nu a . p \mid \nu a . q\) ) is structurally congruent to \(\nu a, b .(p \mid q\{a \mapsto b\})\) (for appropriate fresh \(b\) ) and not to \(\nu a \cdot(p \mid q)\).

So perhaps the original FM restriction type-former is \([\mathbb{A}\)-List \(] X\).
Scope extrusion is an instance of \({ }^{\prime} x\) NM >> (fn \(x=>f(x)\) ), monadic application.

Tangential observation 1: Abstraction by lists with garbage collection of leading vacuous atoms commutes with finite limits and colimits but not infinite limits and colimits, and not with function spaces. This is my bet for a 'restriction' type-former.
(What is 'garbage collection'? \(\nu a b . p \cong \nu a . p\) if \(b \notin f n(p)\).)
Tangential observation 2: In FMG we could have abstraction by \(\omega\)-streams of atoms. This has the properties both of a restriction and an abstraction. Perhaps that's why I thought it was so neat.
pi-ltsb-3

Obvious question: how well does \([\mathbb{A}-L i s t]\) - model restriction? Can we axiomatise/program with abstraction and restriction type-formers using \([\mathbb{A}]\) - and (a relative of) \([\mathbb{A}-L i s t]\) - as models?

Another question: can we apply programming like we saw in pi-ltsb-4 to work by Cardelli ed altri maestri programming with tree structures with hiding.```

